organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-1,2,3-Benzotriazol-1-yl)-1-(4-ethyl­benzo­yl)ethyl 2,4-di­chloro­benzoate

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 8 April 2008; accepted 25 April 2008; online 30 April 2008)

In the title mol­ecule, C24H19Cl2N3, the dihedral angles between the benzotriazole group and the ethyl- and dichloro-substituted benzene rings are 16.53 (1) and 82.09 (1)°, respectively. The crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For related literature, see: Chen & Wu (2005[Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475-477.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19Cl2N3O3

  • Mr = 468.32

  • Triclinic, [P \overline 1]

  • a = 9.251 (3) Å

  • b = 10.904 (4) Å

  • c = 11.057 (4) Å

  • α = 88.327 (6)°

  • β = 86.442 (6)°

  • γ = 83.304 (5)°

  • V = 1105.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.991

  • 5375 measured reflections

  • 3700 independent reflections

  • 2701 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.124

  • S = 1.03

  • 3700 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O3i 0.93 2.51 3.425 (3) 169
C12—H12A⋯O1ii 0.93 2.52 3.378 (4) 154
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

1H-Benzotriazole and its derivatives are an important class of compounds because they exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu, 2005). All bond lengths and angles in the title molecule (I) are within normal ranges (Allen et al., 1987). The benzotriazole ring system is essentially planar, with a dihedral angle of 1.05 (1)° between the triazole ring (atoms N1—N3/C10/C16) and the benzene ring (C10—C16). The dihedral angles between the mean planes of the benzotriazole system and ring atoms C1—C6 and C17—C22 are 82.09 (1) and 16.53 (1), respectively. The dihedral angle between rings atoms C1—C6 and C17—C22 is 89.47 (2). In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into chains extended along the a axis.

Related literature top

For related literature, see: Chen & Wu (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

Bromine (3.2 g,0.02 mol) was added dropwise to a solution of 3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-ethylphenyl)propan-1-one (5.58 g,0.02 mol)and sodium acetate(1.6 g,0.02 mol) in acetic acid (50 ml). The reaction proceeded for 7 h. Water (50 ml) and chloroform (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and the chloroform solution filtered. It was cooled with ice-water, and then an acetone solution (10 ml) of 2,4-dichlorobenzoic acid (3.8 g,0.02 mol) and tri ethylamine (2.8 ml) was added. The mixture was stirred with ice-water for about 6 h. The solution was then filtered and concentrated. Single crystals were obtained by slow evaporation of anacetone-ethylacetate(1:1 v/v) solution of (I) at room temperature over a period of one week.

Refinement top

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(methyl C) H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines. Only H atoms involved in hydrogen bonds are shown.
2-(1H-1,2,3-Benzotriazol-1-yl)-1-(4-ethylbenzoyl)ethyl 2,4-dichlorobenzoate top
Crystal data top
C24H19Cl2N3O3Z = 2
Mr = 468.32F(000) = 484
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.251 (3) ÅCell parameters from 3700 reflections
b = 10.904 (4) Åθ = 1.9–25.0°
c = 11.057 (4) ŵ = 0.33 mm1
α = 88.327 (6)°T = 298 K
β = 86.442 (6)°Block, colorless
γ = 83.304 (5)°0.20 × 0.20 × 0.10 mm
V = 1105.4 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3700 independent reflections
Radiation source: fine-focus sealed tube2701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 710
Tmin = 0.938, Tmax = 0.991k = 1212
5375 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.3617P]
where P = (Fo2 + 2Fc2)/3
3700 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C24H19Cl2N3O3γ = 83.304 (5)°
Mr = 468.32V = 1105.4 (6) Å3
Triclinic, P1Z = 2
a = 9.251 (3) ÅMo Kα radiation
b = 10.904 (4) ŵ = 0.33 mm1
c = 11.057 (4) ÅT = 298 K
α = 88.327 (6)°0.20 × 0.20 × 0.10 mm
β = 86.442 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3700 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2701 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.991Rint = 0.016
5375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3700 reflectionsΔρmin = 0.34 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63408 (12)0.54323 (8)0.16704 (8)0.0986 (4)
Cl20.17075 (9)0.52373 (8)0.46851 (10)0.0910 (3)
N10.5431 (2)0.10230 (19)0.83967 (17)0.0471 (5)
N20.4769 (3)0.1341 (2)0.9489 (2)0.0609 (6)
N30.5560 (3)0.2042 (2)1.0028 (2)0.0672 (7)
O10.1957 (2)0.28033 (18)0.58441 (18)0.0651 (6)
O20.41844 (18)0.18987 (15)0.61852 (15)0.0468 (4)
O30.3025 (2)0.01135 (18)0.51586 (16)0.0608 (5)
C10.5439 (3)0.4634 (3)0.2799 (2)0.0596 (8)
C20.4102 (3)0.5146 (2)0.3249 (2)0.0577 (7)
H2B0.36850.58990.29420.069*
C30.3380 (3)0.4532 (2)0.4161 (2)0.0501 (6)
C40.4002 (3)0.3419 (2)0.4646 (2)0.0436 (6)
C50.5355 (3)0.2945 (2)0.4167 (2)0.0568 (7)
H5A0.57940.22040.44830.068*
C60.6073 (4)0.3530 (3)0.3245 (3)0.0694 (9)
H6A0.69770.31840.29240.083*
C70.3240 (3)0.2712 (2)0.5603 (2)0.0456 (6)
C80.3506 (3)0.1039 (2)0.6972 (2)0.0439 (6)
H8A0.28310.14830.75710.053*
C90.4734 (3)0.0290 (2)0.7597 (2)0.0482 (6)
H9A0.43520.03830.80590.058*
H9B0.54520.00650.69900.058*
C100.6686 (3)0.1556 (2)0.8221 (2)0.0431 (6)
C110.7727 (3)0.1540 (2)0.7266 (2)0.0503 (6)
H11A0.76640.10950.65700.060*
C120.8851 (3)0.2213 (3)0.7409 (3)0.0601 (8)
H12A0.95780.22280.67900.072*
C130.8951 (3)0.2882 (3)0.8449 (3)0.0700 (9)
H13A0.97380.33310.85040.084*
C140.7928 (4)0.2892 (3)0.9380 (3)0.0692 (8)
H14A0.79990.33401.00730.083*
C150.6762 (3)0.2204 (2)0.9264 (2)0.0538 (7)
C160.2697 (3)0.0221 (2)0.6232 (2)0.0431 (6)
C170.1553 (3)0.0460 (2)0.6839 (2)0.0411 (6)
C180.0778 (3)0.1156 (3)0.6140 (2)0.0562 (7)
H18A0.10120.12060.53110.067*
C190.0327 (3)0.1769 (3)0.6645 (3)0.0643 (8)
H19A0.08260.22330.61540.077*
C200.0714 (3)0.1716 (3)0.7863 (3)0.0584 (7)
C210.0066 (3)0.1038 (3)0.8564 (3)0.0606 (8)
H21A0.01720.09970.93920.073*
C220.1188 (3)0.0418 (2)0.8074 (2)0.0514 (7)
H22A0.16990.00290.85720.062*
C230.1960 (4)0.2369 (3)0.8398 (4)0.0919 (12)
H23A0.23980.19260.91020.110*
H23B0.26960.23510.78080.110*
C240.1512 (5)0.3659 (4)0.8759 (4)0.1279 (18)
H24A0.23440.40240.91030.192*
H24B0.07900.36840.93490.192*
H24C0.11100.41120.80610.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1231 (8)0.0765 (6)0.0850 (6)0.0018 (5)0.0436 (6)0.0298 (5)
Cl20.0503 (5)0.0744 (5)0.1377 (8)0.0148 (4)0.0167 (5)0.0406 (5)
N10.0510 (13)0.0529 (12)0.0360 (11)0.0061 (10)0.0035 (10)0.0096 (9)
N20.0689 (16)0.0705 (16)0.0410 (13)0.0087 (13)0.0113 (12)0.0072 (11)
N30.0821 (19)0.0766 (17)0.0422 (13)0.0113 (15)0.0051 (13)0.0002 (12)
O10.0416 (12)0.0720 (13)0.0788 (14)0.0037 (10)0.0036 (9)0.0222 (10)
O20.0430 (10)0.0462 (10)0.0507 (10)0.0075 (8)0.0010 (8)0.0142 (8)
O30.0685 (13)0.0705 (13)0.0441 (11)0.0188 (10)0.0123 (9)0.0010 (9)
C10.074 (2)0.0521 (16)0.0493 (16)0.0051 (15)0.0089 (14)0.0100 (13)
C20.0620 (19)0.0476 (16)0.0618 (18)0.0022 (14)0.0054 (14)0.0154 (13)
C30.0428 (15)0.0477 (15)0.0590 (16)0.0023 (12)0.0059 (12)0.0075 (12)
C40.0450 (14)0.0429 (14)0.0434 (14)0.0080 (11)0.0032 (11)0.0038 (11)
C50.0624 (18)0.0464 (15)0.0559 (17)0.0070 (13)0.0107 (13)0.0119 (13)
C60.074 (2)0.0603 (18)0.0643 (19)0.0143 (16)0.0231 (16)0.0125 (15)
C70.0416 (15)0.0445 (14)0.0501 (15)0.0042 (11)0.0027 (12)0.0037 (12)
C80.0447 (15)0.0441 (14)0.0419 (13)0.0077 (11)0.0042 (11)0.0090 (11)
C90.0530 (16)0.0463 (14)0.0451 (14)0.0090 (12)0.0010 (12)0.0078 (11)
C100.0456 (15)0.0429 (13)0.0392 (13)0.0006 (11)0.0033 (11)0.0097 (11)
C110.0472 (16)0.0512 (15)0.0501 (16)0.0002 (12)0.0030 (12)0.0073 (12)
C120.0459 (16)0.0578 (17)0.074 (2)0.0024 (14)0.0039 (14)0.0090 (15)
C130.0560 (19)0.0633 (19)0.092 (2)0.0130 (15)0.0131 (18)0.0106 (18)
C140.083 (2)0.0620 (18)0.066 (2)0.0107 (17)0.0198 (18)0.0055 (15)
C150.0627 (18)0.0527 (16)0.0453 (15)0.0022 (14)0.0088 (13)0.0043 (12)
C160.0414 (14)0.0424 (13)0.0429 (15)0.0001 (11)0.0055 (11)0.0058 (11)
C170.0401 (14)0.0385 (13)0.0428 (14)0.0008 (11)0.0028 (11)0.0042 (11)
C180.0565 (17)0.0672 (18)0.0454 (15)0.0129 (14)0.0013 (13)0.0010 (13)
C190.0560 (18)0.072 (2)0.068 (2)0.0215 (15)0.0003 (15)0.0026 (15)
C200.0497 (17)0.0519 (16)0.073 (2)0.0095 (13)0.0081 (14)0.0057 (14)
C210.0667 (19)0.0624 (18)0.0506 (16)0.0116 (15)0.0165 (14)0.0087 (14)
C220.0572 (17)0.0512 (15)0.0466 (15)0.0130 (13)0.0014 (12)0.0018 (12)
C230.078 (2)0.094 (3)0.106 (3)0.039 (2)0.028 (2)0.000 (2)
C240.146 (4)0.114 (3)0.137 (4)0.077 (3)0.020 (3)0.051 (3)
Geometric parameters (Å, º) top
Cl1—C11.729 (3)C10—C111.384 (3)
Cl2—C31.720 (3)C11—C121.360 (4)
N1—N21.356 (3)C11—H11A0.9300
N1—C101.358 (3)C12—C131.393 (4)
N1—C91.438 (3)C12—H12A0.9300
N2—N31.298 (3)C13—C141.354 (4)
N3—C151.379 (4)C13—H13A0.9300
O1—C71.194 (3)C14—C151.399 (4)
O2—C71.349 (3)C14—H14A0.9300
O2—C81.432 (3)C16—C171.479 (3)
O3—C161.213 (3)C17—C181.384 (4)
C1—C61.368 (4)C17—C221.388 (3)
C1—C21.366 (4)C18—C191.368 (4)
C2—C31.376 (4)C18—H18A0.9300
C2—H2B0.9300C19—C201.372 (4)
C3—C41.389 (3)C19—H19A0.9300
C4—C51.378 (4)C20—C211.376 (4)
C4—C71.482 (3)C20—C231.506 (4)
C5—C61.365 (4)C21—C221.378 (4)
C5—H5A0.9300C21—H21A0.9300
C6—H6A0.9300C22—H22A0.9300
C8—C91.511 (3)C23—C241.471 (5)
C8—C161.517 (3)C23—H23A0.9700
C8—H8A0.9800C23—H23B0.9700
C9—H9A0.9700C24—H24A0.9600
C9—H9B0.9700C24—H24B0.9600
C10—C151.379 (4)C24—H24C0.9600
N2—N1—C10109.9 (2)C11—C12—C13122.3 (3)
N2—N1—C9119.9 (2)C11—C12—H12A118.9
C10—N1—C9130.1 (2)C13—C12—H12A118.9
N3—N2—N1109.1 (2)C14—C13—C12121.5 (3)
N2—N3—C15107.8 (2)C14—C13—H13A119.2
C7—O2—C8114.28 (19)C12—C13—H13A119.2
C6—C1—C2121.2 (3)C13—C14—C15117.6 (3)
C6—C1—Cl1120.3 (2)C13—C14—H14A121.2
C2—C1—Cl1118.4 (2)C15—C14—H14A121.2
C1—C2—C3119.2 (2)N3—C15—C10108.8 (2)
C1—C2—H2B120.4N3—C15—C14131.5 (3)
C3—C2—H2B120.4C10—C15—C14119.7 (3)
C2—C3—C4121.0 (2)O3—C16—C17121.2 (2)
C2—C3—Cl2116.5 (2)O3—C16—C8119.3 (2)
C4—C3—Cl2122.5 (2)C17—C16—C8119.5 (2)
C5—C4—C3117.6 (2)C18—C17—C22117.9 (2)
C5—C4—C7119.7 (2)C18—C17—C16118.7 (2)
C3—C4—C7122.7 (2)C22—C17—C16123.4 (2)
C6—C5—C4122.1 (2)C19—C18—C17121.2 (3)
C6—C5—H5A119.0C19—C18—H18A119.4
C4—C5—H5A119.0C17—C18—H18A119.4
C5—C6—C1118.9 (3)C18—C19—C20121.3 (3)
C5—C6—H6A120.6C18—C19—H19A119.3
C1—C6—H6A120.6C20—C19—H19A119.3
O1—C7—O2122.2 (2)C19—C20—C21117.6 (3)
O1—C7—C4126.3 (2)C19—C20—C23120.6 (3)
O2—C7—C4111.5 (2)C21—C20—C23121.7 (3)
O2—C8—C9105.67 (19)C22—C21—C20122.0 (3)
O2—C8—C16109.74 (19)C22—C21—H21A119.0
C9—C8—C16111.0 (2)C20—C21—H21A119.0
O2—C8—H8A110.1C21—C22—C17119.9 (3)
C9—C8—H8A110.1C21—C22—H22A120.0
C16—C8—H8A110.1C17—C22—H22A120.0
N1—C9—C8112.2 (2)C24—C23—C20113.1 (3)
N1—C9—H9A109.2C24—C23—H23A109.0
C8—C9—H9A109.2C20—C23—H23A109.0
N1—C9—H9B109.2C24—C23—H23B109.0
C8—C9—H9B109.2C20—C23—H23B109.0
H9A—C9—H9B107.9H23A—C23—H23B107.8
N1—C10—C15104.4 (2)C23—C24—H24A109.5
N1—C10—C11132.5 (2)C23—C24—H24B109.5
C15—C10—C11123.0 (3)H24A—C24—H24B109.5
C12—C11—C10115.9 (3)C23—C24—H24C109.5
C12—C11—H11A122.1H24A—C24—H24C109.5
C10—C11—H11A122.1H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.932.513.425 (3)169
C12—H12A···O1ii0.932.523.378 (4)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H19Cl2N3O3
Mr468.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.251 (3), 10.904 (4), 11.057 (4)
α, β, γ (°)88.327 (6), 86.442 (6), 83.304 (5)
V3)1105.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.938, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5375, 3700, 2701
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.03
No. of reflections3700
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.932.513.425 (3)169
C12—H12A···O1ii0.932.523.378 (4)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds