supplementary materials


lx2038 scheme

Acta Cryst. (2008). E64, m740    [ doi:10.1107/S1600536808012002 ]

(2,9-Dimethyl-1,10-phenanthroline-[kappa]2N,N')bis(2-hydroxybenzoato)-[kappa]O;[kappa]2O,O'-cobalt(II)

P.-Z. Zhao, X.-P. Xuan and Q.-H. Tang

Abstract top

In the title compound, [Co(C7H5O3)2(C14H12N2)], the CoII ion is five-coordinated by two N atoms from one 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand and three O atoms from two 2-hydroxybenzoate anions in a distorted trigonal bipyramidal geometry. The carboxylate group of one of the two 2-hydroxybenzoate anions is monodentate with a normal Co-O distance [1.9804 (18) Å], while the other is bidentate with two longer Co-O bonds [2.1981 (18) and 2.1359 (19) Å]. The crystal structure is stabilized by aromatic [pi]-[pi] stacking interactions [centroid-centroid distances of 4.0380 (3) and 3.8216 (3) Å between dmphen/dmphen and benzene/dmphen rings, respectively] and C-H...[pi](benzene) interactions.

Comment top

Metal-phenanthroline complexes have attracted much attention because of their peculiar features during recent decades (Wang et al., 1996; Wall et al., 1999; Naing et al., 1995). A number of Co(II)-phenanthroline complexes have been synthesized and structures were determined (Ding et al., 2006; Ren et al., 2007; Zhong et al., 2006; Xuan & Zhao, 2007). Herein we report the molecular and crystal structure of the title compound, (I), Bis(2-hydroxybenzoato–κO,κ2O,O')-(2,9-dimethyl-1, 10-phenanthroline-κ2N,N')-cobalt (II) (Fig. 1).

The Co atom in (I) is coordinated by a dmphen ligand and two 2-hydroxybenzoato ligands (Fig.1). The values of Co—O1 and Co—O2 distances are larger than the normal Co—O4 bond distance. The Co—O1—C15 and Co—O2—C15 bond angles [89.23 (14)°, 92.28 (15)°] appear to be compressed in order to allow Co and O atoms to approach each other. These imply the existence of genuing bonding interactions bwtween Co and O atoms, i.e. the C15-carboxylate group coordinates to the Co atom in chelating mode. The other ligand has a larger Co—O4—C22 angle of 107.71 (16)°. The values of Co···O5 distance is 2.6624 (22) Å, suggesting no bonding between the Co and O5 atoms. Therefore, the CoO3N2 unit forms a distorted trigonal-bipyramidal geometry.

A partially overlapped arrangement of neighboring parallel C3-dmphen and C3v-dmphen rings[symmetry code: (v) -x + 2, -y + 1, -z + 1] is observed in the structure of (I) (Fig. 2). The shorter face-to-face separation of 3.3881 (5) Å clearly indicates the existence of ππ stacking between the dmphen ligands. In addition, the distance between the ring centroids Cg3 (C2—C5/C13/N1) and Cg2iii (C16iii—C21iii) is 3.8216 (3) Å. This value is indentical to van der Waals thickness of the ππ stacking interaction between the nearly parallel dmphen and benzene ligands [dihedral angle 0.208 (68)°], although dmphen and benzene rings are well overlapped with respect to each other (Fig. 2).

The interaction of C—H···π and hydrogen bond intrains in the compound. The crystal structure is further stablilized by C—H···π interactions between the H atom of C3-dmphen ring and C23i-benzene ring, with a C3—H3···Cg1i separation of 2.5914 (4) Å (Fig.2 and Table 1; Cg1i is the centroid of C23i—C28i benzene ring, symmmetry code as in Fig. 2).

Related literature top

For related literature, see: Naing et al. (1995); Wang et al. (1996); Wall et al. (1999). For related structures, see: Ding et al. (2006); Ren et al. (2007); Xuan & Zhao (2007); Zhong et al. (2006). Cg1 is the centroid of the C23–C28 benzene ring and Cg2 is the centroid of the C16–C21 benzene ring.

Experimental top

2-hydroxybenzoic acid (0.1396 g, 1 mmol) and NaOH (0.0377 g, 1 mmol) were dissolved in distilled water(15 ml) and Co(NO3)2.6H2O (0.1460 g, 0.5 mmol) were added. This solution was added to a solution of 2,9-dimethyl-1,10-phenanthroline hemihydrate (C14H12N2.0.5H2O, 0.1087 g, 0.5 mmol) in ethanol (10 ml). The mixture was stirred at 323 K and then refluxed for 4 h, cooled to room temperature and filtered. Brown single crystals of (I) were appeared over a period of one day by slow evaporation at room temperature.

Refinement top

Methyl H and hydroxy H atoms were placed in calculated positions,with C—H=0.96 and O—H=0.82 Å, and refined with free torsion angles to fit the electron density; Uiso(H) = 1.5Ueq(carrier). Other H atoms were placed in calculated positions, with C—H=0.93 Å, and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex(I), with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. ππ and C—H···π interactions of neighboring molecules and hydrogen bond intrains in the crystal structure of (I). [symmetry code: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) -x + 3/2, y - 1/2, -z + 1/2; (iv)-x + 1/2, y - 1/2, -z + 1/2; (v) -x + 2, -y + 1, -z + 1; (vi) x + 1/2, -y + 3/2, z + 1/2; (vii) x + 1, y, z; (viii) x + 3/2, -y + 3/2, z + 1/2]
(2,9-Dimethyl-1,10-phenanthroline-κ2N,N')bis(2- hydroxybenzoato)-κO;κ2O,O'-cobalt(II) top
Crystal data top
[Co(C7H5O3)2(C14H12N2)]F000 = 1116
Mr = 541.41Dx = 1.473 Mg m3
Monoclinic, P21/nMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6265 reflections
a = 11.4360 (10) Åθ = 2.4–26.2º
b = 16.528 (2) ŵ = 0.75 mm1
c = 13.426 (2) ÅT = 293 (2) K
β = 105.8560 (10)ºBlock, brown
V = 2441.1 (5) Å30.46 × 0.36 × 0.30 mm
Z = 4
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
5998 independent reflections
Radiation source: fine-focus sealed tube4476 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 28.4º
T = 293(2) Kθmin = 2.4º
φ and ω scansh = 15→15
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 21→22
Tmin = 0.779, Tmax = 0.858l = 16→17
20557 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0698P)2 + 0.571P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5998 reflectionsΔρmax = 0.86 e Å3
338 parametersΔρmin = 0.39 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
[Co(C7H5O3)2(C14H12N2)]V = 2441.1 (5) Å3
Mr = 541.41Z = 4
Monoclinic, P21/nMo Kα
a = 11.4360 (10) ŵ = 0.75 mm1
b = 16.528 (2) ÅT = 293 (2) K
c = 13.426 (2) Å0.46 × 0.36 × 0.30 mm
β = 105.8560 (10)º
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
5998 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4476 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.858Rint = 0.023
20557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040338 parameters
wR(F2) = 0.127H-atom parameters constrained
S = 1.04Δρmax = 0.86 e Å3
5998 reflectionsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.66347 (2)0.522121 (17)0.26226 (2)0.04340 (11)
O10.65059 (16)0.59650 (10)0.12395 (14)0.0649 (5)
O20.77931 (16)0.62474 (11)0.27073 (14)0.0671 (5)
O30.6514 (3)0.67759 (15)0.04042 (18)0.0985 (7)
H3O0.63710.63760.00950.148*
O40.49377 (15)0.48299 (12)0.23285 (17)0.0713 (5)
O50.47135 (18)0.61052 (14)0.26953 (17)0.0841 (6)
O60.2585 (2)0.67472 (13)0.2052 (2)0.0926 (7)
H6O0.33150.67320.23430.139*
N10.76714 (15)0.48305 (10)0.40730 (13)0.0422 (4)
N20.74922 (14)0.42206 (10)0.21681 (13)0.0397 (4)
C10.6828 (2)0.57760 (19)0.5073 (2)0.0727 (8)
H1A0.66060.60790.44390.109*
H1B0.71910.61320.56380.109*
H1C0.61150.55320.51900.109*
C20.7717 (2)0.51308 (14)0.50009 (18)0.0492 (5)
C30.8578 (2)0.48496 (15)0.58982 (18)0.0546 (6)
H30.85970.50680.65410.066*
C40.9379 (2)0.42604 (15)0.58278 (18)0.0544 (6)
H40.99530.40800.64190.065*
C50.93361 (18)0.39243 (14)0.48552 (16)0.0471 (5)
C61.0126 (2)0.32887 (15)0.4708 (2)0.0589 (6)
H61.07140.30870.52760.071*
C71.0031 (2)0.29808 (15)0.3768 (2)0.0588 (6)
H71.05530.25680.36940.071*
C80.91380 (19)0.32754 (13)0.28708 (18)0.0482 (5)
C90.8954 (2)0.29494 (14)0.18696 (19)0.0557 (6)
H90.94410.25270.17570.067*
C100.8064 (2)0.32529 (14)0.10690 (19)0.0562 (6)
H100.79410.30380.04080.067*
C110.73282 (19)0.38898 (13)0.12356 (17)0.0468 (5)
C120.83719 (17)0.39055 (12)0.29830 (15)0.0397 (4)
C130.84636 (16)0.42332 (12)0.39942 (15)0.0402 (4)
C140.6317 (2)0.42116 (17)0.03642 (19)0.0638 (6)
H14A0.56370.43510.06200.096*
H14B0.60750.38060.01630.096*
H14C0.65920.46840.00780.096*
C150.7372 (2)0.63949 (13)0.17593 (19)0.0505 (5)
C160.7892 (2)0.70419 (13)0.12395 (19)0.0506 (5)
C170.7452 (3)0.71637 (15)0.0181 (2)0.0635 (6)
C180.7973 (4)0.7736 (2)0.0324 (3)0.0966 (12)
H180.76800.78060.10360.116*
C190.8899 (4)0.8184 (2)0.0225 (5)0.1149 (17)
H190.92480.85640.01160.138*
C200.9356 (3)0.8098 (2)0.1287 (5)0.1114 (15)
H200.99990.84230.16430.134*
C210.8862 (2)0.75258 (15)0.1836 (3)0.0800 (9)
H210.91530.74680.25500.096*
C220.4271 (2)0.54319 (17)0.23779 (18)0.0539 (6)
C230.29299 (19)0.53232 (13)0.20118 (16)0.0454 (5)
C240.2156 (2)0.59876 (17)0.18600 (19)0.0593 (6)
C250.0897 (3)0.5876 (2)0.1481 (2)0.0805 (9)
H250.03740.63190.13660.097*
C260.0446 (3)0.5104 (3)0.1281 (2)0.0905 (11)
H260.03900.50280.10480.109*
C270.1191 (3)0.4451 (2)0.1415 (2)0.0792 (9)
H270.08670.39340.12650.095*
C280.2427 (2)0.45565 (17)0.17743 (19)0.0583 (6)
H280.29360.41080.18600.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.03569 (16)0.04799 (18)0.04465 (18)0.00305 (11)0.00781 (12)0.00426 (11)
O10.0620 (10)0.0564 (9)0.0732 (12)0.0129 (8)0.0131 (9)0.0073 (8)
O20.0662 (11)0.0710 (11)0.0597 (11)0.0084 (9)0.0098 (9)0.0131 (9)
O30.134 (2)0.0891 (16)0.0711 (14)0.0045 (15)0.0268 (14)0.0029 (12)
O40.0378 (8)0.0865 (14)0.0891 (14)0.0078 (8)0.0163 (9)0.0230 (10)
O50.0729 (12)0.0987 (16)0.0775 (13)0.0393 (12)0.0150 (10)0.0125 (11)
O60.1171 (18)0.0672 (13)0.1017 (18)0.0126 (12)0.0439 (16)0.0003 (11)
N10.0362 (8)0.0499 (10)0.0402 (9)0.0024 (7)0.0100 (7)0.0020 (7)
N20.0345 (8)0.0428 (9)0.0402 (9)0.0003 (6)0.0077 (6)0.0051 (7)
C10.0637 (15)0.094 (2)0.0591 (16)0.0221 (15)0.0149 (12)0.0129 (14)
C20.0433 (11)0.0600 (13)0.0440 (12)0.0001 (10)0.0114 (9)0.0001 (10)
C30.0538 (13)0.0711 (15)0.0383 (12)0.0012 (11)0.0115 (10)0.0013 (10)
C40.0472 (12)0.0689 (15)0.0432 (12)0.0018 (11)0.0058 (9)0.0131 (10)
C50.0395 (10)0.0559 (12)0.0448 (12)0.0024 (9)0.0096 (9)0.0129 (9)
C60.0502 (12)0.0646 (14)0.0575 (14)0.0168 (11)0.0074 (11)0.0210 (12)
C70.0540 (13)0.0560 (13)0.0672 (16)0.0204 (11)0.0179 (11)0.0156 (12)
C80.0461 (11)0.0439 (11)0.0572 (13)0.0060 (9)0.0185 (10)0.0076 (9)
C90.0601 (13)0.0472 (12)0.0628 (15)0.0092 (10)0.0219 (11)0.0001 (10)
C100.0671 (15)0.0512 (13)0.0520 (13)0.0003 (11)0.0191 (11)0.0069 (10)
C110.0478 (11)0.0475 (11)0.0448 (12)0.0044 (9)0.0120 (9)0.0018 (9)
C120.0361 (9)0.0409 (10)0.0432 (11)0.0001 (8)0.0127 (8)0.0085 (8)
C130.0332 (9)0.0456 (10)0.0419 (11)0.0000 (8)0.0103 (8)0.0087 (8)
C140.0659 (15)0.0730 (16)0.0438 (13)0.0047 (13)0.0001 (11)0.0063 (11)
C150.0470 (11)0.0449 (11)0.0622 (15)0.0111 (9)0.0193 (10)0.0061 (10)
C160.0477 (11)0.0380 (10)0.0717 (15)0.0054 (9)0.0259 (11)0.0007 (10)
C170.0734 (16)0.0531 (13)0.0745 (18)0.0071 (12)0.0379 (14)0.0058 (12)
C180.112 (3)0.084 (2)0.119 (3)0.022 (2)0.075 (2)0.036 (2)
C190.104 (3)0.067 (2)0.205 (5)0.007 (2)0.096 (4)0.030 (3)
C200.068 (2)0.0577 (18)0.219 (5)0.0157 (15)0.057 (3)0.025 (3)
C210.0525 (14)0.0464 (13)0.148 (3)0.0021 (11)0.0390 (17)0.0123 (16)
C220.0408 (11)0.0775 (16)0.0422 (12)0.0063 (11)0.0094 (9)0.0102 (11)
C230.0381 (10)0.0631 (13)0.0357 (10)0.0005 (9)0.0111 (8)0.0002 (9)
C240.0634 (14)0.0708 (16)0.0483 (13)0.0131 (12)0.0227 (11)0.0034 (11)
C250.0564 (15)0.130 (3)0.0573 (16)0.0379 (18)0.0187 (13)0.0141 (17)
C260.0416 (14)0.170 (4)0.0562 (18)0.0097 (19)0.0079 (12)0.012 (2)
C270.0581 (16)0.113 (2)0.0666 (18)0.0316 (17)0.0173 (13)0.0227 (17)
C280.0507 (13)0.0715 (15)0.0546 (14)0.0070 (11)0.0177 (11)0.0093 (11)
Geometric parameters (Å, °) top
Co—O41.9804 (18)C8—C91.410 (3)
Co—N12.0863 (17)C9—C101.359 (3)
Co—N22.0967 (17)C9—H90.9300
Co—O22.1359 (19)C10—C111.403 (3)
Co—O12.1981 (18)C10—H100.9300
O1—C151.263 (3)C11—C141.500 (3)
O2—C151.256 (3)C12—C131.439 (3)
O3—C171.311 (4)C14—H14A0.9600
O3—H3O0.8200C14—H14B0.9600
O4—C221.266 (3)C14—H14C0.9600
O5—C221.248 (3)C15—C161.487 (3)
O6—C241.347 (3)C16—C171.386 (4)
O6—H6O0.8200C16—C211.423 (4)
N1—C21.329 (3)C17—C181.389 (4)
N1—C131.363 (3)C18—C191.337 (6)
N2—C111.332 (3)C18—H180.9300
N2—C121.371 (2)C19—C201.384 (6)
C1—C21.495 (3)C19—H190.9300
C1—H1A0.9600C20—C211.409 (5)
C1—H1B0.9600C20—H200.9300
C1—H1C0.9600C21—H210.9300
C2—C31.410 (3)C22—C231.488 (3)
C3—C41.358 (3)C23—C241.390 (3)
C3—H30.9300C23—C281.392 (3)
C4—C51.407 (3)C24—C251.402 (4)
C4—H40.9300C25—C261.376 (5)
C5—C131.401 (3)C25—H250.9300
C5—C61.434 (3)C26—C271.356 (5)
C6—C71.337 (4)C26—H260.9300
C6—H60.9300C27—C281.375 (4)
C7—C81.435 (3)C27—H270.9300
C7—H70.9300C28—H280.9300
C8—C121.395 (3)
O4—Co—N1111.16 (8)C10—C11—C14120.6 (2)
O4—Co—N2101.25 (8)N2—C12—C8122.88 (19)
N1—Co—N280.55 (7)N2—C12—C13117.29 (17)
O4—Co—O2146.07 (7)C8—C12—C13119.79 (18)
N1—Co—O290.58 (7)N1—C13—C5122.59 (19)
N2—Co—O2108.01 (7)N1—C13—C12117.85 (17)
O4—Co—O1100.27 (7)C5—C13—C12119.56 (18)
N1—Co—O1148.37 (7)C11—C14—H14A109.5
N2—Co—O197.12 (7)C11—C14—H14B109.5
O2—Co—O159.89 (6)H14A—C14—H14B109.5
C15—O1—Co89.23 (14)C11—C14—H14C109.5
C15—O2—Co92.28 (15)H14A—C14—H14C109.5
C17—O3—H3O109.5H14B—C14—H14C109.5
C22—O4—Co107.71 (16)O2—C15—O1118.4 (2)
C24—O6—H6O109.5O2—C15—C16121.6 (2)
C2—N1—C13119.10 (18)O1—C15—C16119.9 (2)
C2—N1—Co128.77 (15)C17—C16—C21120.3 (2)
C13—N1—Co111.84 (13)C17—C16—C15120.4 (2)
C11—N2—C12118.60 (18)C21—C16—C15119.4 (2)
C11—N2—Co129.83 (14)O3—C17—C16123.5 (2)
C12—N2—Co111.53 (13)O3—C17—C18115.4 (3)
C2—C1—H1A109.5C16—C17—C18121.0 (3)
C2—C1—H1B109.5C19—C18—C17119.3 (4)
H1A—C1—H1B109.5C19—C18—H18120.4
C2—C1—H1C109.5C17—C18—H18120.4
H1A—C1—H1C109.5C18—C19—C20122.0 (3)
H1B—C1—H1C109.5C18—C19—H19119.0
N1—C2—C3121.2 (2)C20—C19—H19119.0
N1—C2—C1118.3 (2)C19—C20—C21121.0 (4)
C3—C2—C1120.5 (2)C19—C20—H20119.5
C4—C3—C2120.2 (2)C21—C20—H20119.5
C4—C3—H3119.9C20—C21—C16116.5 (4)
C2—C3—H3119.9C20—C21—H21121.8
C3—C4—C5119.6 (2)C16—C21—H21121.8
C3—C4—H4120.2O5—C22—O4121.6 (2)
C5—C4—H4120.2O5—C22—C23120.4 (2)
C13—C5—C4117.3 (2)O4—C22—C23118.0 (2)
C13—C5—C6119.1 (2)C24—C23—C28118.6 (2)
C4—C5—C6123.6 (2)C24—C23—C22120.7 (2)
C7—C6—C5121.1 (2)C28—C23—C22120.6 (2)
C7—C6—H6119.4O6—C24—C23121.6 (2)
C5—C6—H6119.4O6—C24—C25118.4 (3)
C6—C7—C8121.3 (2)C23—C24—C25119.9 (3)
C6—C7—H7119.4C26—C25—C24119.0 (3)
C8—C7—H7119.4C26—C25—H25120.5
C12—C8—C9117.0 (2)C24—C25—H25120.5
C12—C8—C7119.1 (2)C27—C26—C25121.6 (3)
C9—C8—C7123.9 (2)C27—C26—H26119.2
C10—C9—C8119.9 (2)C25—C26—H26119.2
C10—C9—H9120.1C26—C27—C28119.6 (3)
C8—C9—H9120.1C26—C27—H27120.2
C9—C10—C11120.2 (2)C28—C27—H27120.2
C9—C10—H10119.9C27—C28—C23121.2 (3)
C11—C10—H10119.9C27—C28—H28119.4
N2—C11—C10121.4 (2)C23—C28—H28119.4
N2—C11—C14117.9 (2)
O4—Co—O1—C15152.70 (14)Co—N2—C12—C136.9 (2)
N1—Co—O1—C1520.9 (2)C9—C8—C12—N21.6 (3)
N2—Co—O1—C15104.45 (14)C7—C8—C12—N2179.73 (19)
O2—Co—O1—C152.28 (13)C9—C8—C12—C13176.34 (19)
O4—Co—O2—C1562.8 (2)C7—C8—C12—C131.8 (3)
N1—Co—O2—C15165.78 (14)C2—N1—C13—C50.5 (3)
N2—Co—O2—C1585.54 (14)Co—N1—C13—C5173.88 (16)
O1—Co—O2—C152.30 (13)C2—N1—C13—C12178.44 (18)
N1—Co—O4—C22108.46 (16)Co—N1—C13—C127.2 (2)
N2—Co—O4—C22167.43 (16)C4—C5—C13—N10.5 (3)
O2—Co—O4—C2218.0 (3)C6—C5—C13—N1179.22 (19)
O1—Co—O4—C2267.95 (17)C4—C5—C13—C12179.36 (18)
O4—Co—N1—C279.6 (2)C6—C5—C13—C120.3 (3)
N2—Co—N1—C2178.06 (19)N2—C12—C13—N10.1 (3)
O2—Co—N1—C273.77 (19)C8—C12—C13—N1177.93 (17)
O1—Co—N1—C293.7 (2)N2—C12—C13—C5179.10 (17)
O4—Co—N1—C13106.75 (14)C8—C12—C13—C51.0 (3)
N2—Co—N1—C138.26 (13)Co—O2—C15—O13.9 (2)
O2—Co—N1—C1399.91 (14)Co—O2—C15—C16174.31 (17)
O1—Co—N1—C1379.99 (19)Co—O1—C15—O23.8 (2)
O4—Co—N2—C1164.42 (19)Co—O1—C15—C16174.45 (17)
N1—Co—N2—C11174.30 (18)O2—C15—C16—C17176.6 (2)
O2—Co—N2—C1198.18 (18)O1—C15—C16—C171.6 (3)
O1—Co—N2—C1137.59 (18)O2—C15—C16—C212.3 (3)
O4—Co—N2—C12118.05 (13)O1—C15—C16—C21179.5 (2)
N1—Co—N2—C128.17 (13)C21—C16—C17—O3175.6 (2)
O2—Co—N2—C1279.35 (13)C15—C16—C17—O35.6 (4)
O1—Co—N2—C12139.94 (13)C21—C16—C17—C182.4 (4)
C13—N1—C2—C30.8 (3)C15—C16—C17—C18176.4 (2)
Co—N1—C2—C3172.49 (16)O3—C17—C18—C19177.0 (3)
C13—N1—C2—C1179.0 (2)C16—C17—C18—C191.1 (4)
Co—N1—C2—C17.7 (3)C17—C18—C19—C200.3 (5)
N1—C2—C3—C40.1 (4)C18—C19—C20—C210.4 (6)
C1—C2—C3—C4179.7 (2)C19—C20—C21—C160.9 (4)
C2—C3—C4—C50.8 (4)C17—C16—C21—C202.2 (3)
C3—C4—C5—C131.1 (3)C15—C16—C21—C20176.6 (2)
C3—C4—C5—C6178.6 (2)Co—O4—C22—O58.2 (3)
C13—C5—C6—C70.9 (3)Co—O4—C22—C23169.81 (15)
C4—C5—C6—C7178.7 (2)O5—C22—C23—C2410.4 (3)
C5—C6—C7—C80.2 (4)O4—C22—C23—C24167.7 (2)
C6—C7—C8—C121.2 (4)O5—C22—C23—C28172.3 (2)
C6—C7—C8—C9176.8 (2)O4—C22—C23—C289.7 (3)
C12—C8—C9—C100.2 (3)C28—C23—C24—O6178.5 (2)
C7—C8—C9—C10178.2 (2)C22—C23—C24—O61.0 (3)
C8—C9—C10—C110.0 (4)C28—C23—C24—C250.4 (3)
C12—N2—C11—C102.5 (3)C22—C23—C24—C25177.8 (2)
Co—N2—C11—C10174.90 (16)O6—C24—C25—C26180.0 (3)
C12—N2—C11—C14176.70 (19)C23—C24—C25—C261.1 (4)
Co—N2—C11—C145.9 (3)C24—C25—C26—C271.8 (5)
C9—C10—C11—N21.1 (3)C25—C26—C27—C281.0 (5)
C9—C10—C11—C14178.0 (2)C26—C27—C28—C230.5 (4)
C11—N2—C12—C82.8 (3)C24—C23—C28—C271.2 (4)
Co—N2—C12—C8175.06 (15)C22—C23—C28—C27178.6 (2)
C11—N2—C12—C13175.23 (17)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O10.821.882.584 (3)143
O6—H6O···O50.821.862.578 (3)146
C3—H3···Cg1i0.932.593.402 (3)146
C25—H25···Cg2ii0.933.073.989 (3)172
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O10.821.882.584 (3)143
O6—H6O···O50.821.862.578 (3)146
C3—H3···Cg1i0.932.593.402 (3)146
C25—H25···Cg2ii0.933.073.989 (3)172
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z.
Acknowledgements top

Financial support from the Science Fund of Henan Province for Distinguished Young Scholars (No. 074100510005) is gratefully acknowledged.

references
References top

Bruker (2004). APEX2, SAINT and SMART (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m2540–m2542.

Naing, K., Taniguchi, M., Takahashi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350–356.

Ren, Y.-L., Liu, Y.-J. & Song, W.-D. (2007). Acta Cryst. E63, m1191–m1193.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711.

Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629–2634.

Xuan, X. & Zhao, P. (2007). Acta Cryst. E63, m3009.

Zhong, H., Zeng, X.-R. & Luo, Q.-Y. (2006). Acta Cryst. E62, m3330–m3332.