organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Eth­­oxy-2-hy­droxy­benzyl­­idene)-3-hy­droxy­naphthalene-2-carbohydrazide

aDepartment of Pharmacopedics, Jilin Medical College, Jilin 132013, People's Republic of China, bDepartment of Biochemistry, Jilin Medical College, Jilin 132013, People's Republic of China, and cCollege of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
*Correspondence e-mail: jlcpcxb@yahoo.com.cn, houlizh@yahoo.com.cn

(Received 15 April 2008; accepted 19 April 2008; online 26 April 2008)

In the mol­ecule of the title compound, C20H18N2O4, the dihedral angle between the benzene ring and the naphthyl ring system is 8.5 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For background on Schiff base compounds and their biological applications, see: Schiff (1864[Schiff, H. (1864). Ann. Chem. Pharm. 131, 118-124.]); Brückner et al. (2000[Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.]); Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For related structures, see: Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Diao et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.], 2008[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.]); Huang et al. (2007[Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.]); Li et al. (2007[Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O4

  • Mr = 350.36

  • Monoclinic, C 2/c

  • a = 28.420 (15) Å

  • b = 6.456 (5) Å

  • c = 18.800 (14) Å

  • β = 100.658 (10)°

  • V = 3390 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.30 × 0.27 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.974

  • 13100 measured reflections

  • 3503 independent reflections

  • 2183 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.178

  • S = 1.06

  • 3503 reflections

  • 242 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.87 2.661 (3) 161
O3—H3⋯N2 0.82 1.87 2.589 (3) 146
N1—H1A⋯O1 0.900 (10) 1.95 (2) 2.619 (3) 130 (2)
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compounds derived from the condensation reactions of aldehydes with primary amines are called Schiff base compounds (Schiff, 1864). Schiff base compounds and their metal complexes have attracted much interest for their wide applications, especially for their potential pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). In this paper, the preparation and crystal structure of the title compound, (I), is reported.

In the structure of (I) (Fig. 1), the naphthyl ring and 2-hydroxyphenyl methylidene hydrazide moiety are nearly coplanar with the dihedral angle between the phenyl ring and the naphthyl ring is 8.5 (2) °; the torsion angles C13—C12—N2—N1 and N2—N1—C11—C1 are 3.5 (2) and 1.4 (2)°, respectively. The methoxy group is slightly twisted out of the plane of the phenyl ring with torsion angle C15—O4—C19—C20 being 13.1 (2)°. The molecules of (I) are linked through intermolecular O–H···O hydrogen bonds, forming chains running along the b axis. The structure is further stabilized by intramolecular interactions N1—H1A···O1 and O3—H3···N2 (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987) and comparable to the values observed in other similar compounds (Diao et al., 2008; Diao et al., 2007; Diao, 2007; Li et al., 2007; Huang et al., 2007).

Related literature top

For background on Schiff base compounds and their biological applications, see: Schiff (1864); Brückner et al. (2000); Harrop et al. (2003); Ren et al. (2002). For related structures, see: Allen et al. (1987); Diao (2007); Diao et al. (2007, 2008); Huang et al. (2007); Li et al. (2007).

Experimental top

3-Ethoxysalicylaldehyde (0.1 mmol, 16.6 mg) and 3-hydroxynaphthalene-2-carboxylic acid hydrazide (0.1 mmol, 20.2 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred at reflux for 1 h and cooled to room temperature. After keeping the solution in air for a few days, colorless block-like crystals were formed.

Refinement top

H1A was located from a difference Fourier map and refined isotropically. The rest of the H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.97 Å, O–H distances of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement parameters drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) showing intermolecular hydrogen-bonds with dashed lines.
N'-(3-Ethoxy-2-hydroxybenzylidene)-3-hydroxynaphthalene-2-carbohydrazide top
Crystal data top
C20H18N2O4F(000) = 1472
Mr = 350.36Dx = 1.373 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1359 reflections
a = 28.420 (15) Åθ = 2.2–24.3°
b = 6.456 (5) ŵ = 0.10 mm1
c = 18.800 (14) ÅT = 298 K
β = 100.658 (10)°Block, colorless
V = 3390 (4) Å30.30 × 0.27 × 0.27 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3503 independent reflections
Radiation source: fine-focus sealed tube2183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3535
Tmin = 0.972, Tmax = 0.974k = 88
13100 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178 w = 1/[σ2(Fo2) + 0.1909P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3503 reflectionsΔρmax = 0.24 e Å3
242 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (6)
Crystal data top
C20H18N2O4V = 3390 (4) Å3
Mr = 350.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.420 (15) ŵ = 0.10 mm1
b = 6.456 (5) ÅT = 298 K
c = 18.800 (14) Å0.30 × 0.27 × 0.27 mm
β = 100.658 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3503 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2183 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.974Rint = 0.057
13100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
3503 reflectionsΔρmin = 0.19 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.00934 (6)0.1963 (2)0.34159 (8)0.0489 (5)
H11.00590.32110.34700.073*
O20.98937 (6)0.4267 (2)0.38501 (9)0.0528 (5)
O30.88269 (7)0.6149 (3)0.24267 (9)0.0611 (6)
H30.90390.53980.26440.092*
O40.81068 (6)0.8088 (3)0.16639 (10)0.0592 (5)
N10.96591 (7)0.1590 (3)0.31039 (10)0.0396 (5)
N20.93488 (7)0.2841 (3)0.26466 (10)0.0394 (5)
C11.02434 (7)0.1001 (3)0.41996 (11)0.0336 (5)
C21.03361 (8)0.1122 (3)0.40475 (11)0.0363 (5)
C31.06657 (8)0.2231 (3)0.45120 (13)0.0405 (6)
H3A1.07340.35800.43900.049*
C41.09062 (8)0.1396 (3)0.51714 (12)0.0377 (5)
C51.12406 (8)0.2534 (4)0.56714 (14)0.0467 (6)
H51.13140.38880.55630.056*
C61.14561 (9)0.1678 (4)0.63087 (14)0.0502 (6)
H61.16700.24650.66350.060*
C71.13609 (8)0.0384 (4)0.64834 (13)0.0498 (7)
H71.15160.09600.69170.060*
C81.10409 (8)0.1528 (4)0.60139 (12)0.0431 (6)
H81.09760.28820.61330.052*
C91.08064 (8)0.0685 (3)0.53476 (11)0.0364 (5)
C101.04759 (8)0.1814 (3)0.48433 (12)0.0372 (5)
H101.04120.31790.49520.045*
C110.99190 (8)0.2416 (3)0.37086 (12)0.0365 (5)
C120.91016 (8)0.2028 (4)0.20827 (12)0.0402 (6)
H120.91470.06430.19770.048*
C130.87471 (8)0.3253 (4)0.16007 (12)0.0392 (6)
C140.86145 (8)0.5211 (4)0.18082 (12)0.0426 (6)
C150.82336 (9)0.6255 (4)0.13816 (13)0.0471 (6)
C160.80210 (9)0.5426 (4)0.07255 (13)0.0562 (7)
H160.77760.61480.04310.067*
C170.81680 (9)0.3529 (4)0.04985 (14)0.0566 (7)
H170.80270.30010.00490.068*
C180.85201 (8)0.2431 (4)0.09359 (13)0.0465 (6)
H180.86090.11340.07910.056*
C190.76647 (9)0.9005 (4)0.13279 (16)0.0612 (8)
H19A0.74130.79710.12510.073*
H19B0.76940.95900.08630.073*
C200.75477 (11)1.0676 (4)0.18230 (17)0.0764 (9)
H20A0.74981.00670.22690.115*
H20B0.72621.13840.15970.115*
H20C0.78081.16430.19200.115*
H1A0.9661 (10)0.0234 (18)0.2992 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0656 (11)0.0304 (9)0.0453 (10)0.0015 (8)0.0038 (8)0.0026 (7)
O20.0653 (12)0.0272 (9)0.0598 (11)0.0042 (8)0.0043 (9)0.0031 (8)
O30.0697 (13)0.0505 (11)0.0525 (11)0.0209 (9)0.0165 (9)0.0120 (9)
O40.0558 (11)0.0509 (11)0.0628 (12)0.0186 (8)0.0098 (9)0.0038 (9)
N10.0435 (11)0.0338 (10)0.0395 (11)0.0055 (9)0.0022 (9)0.0036 (9)
N20.0412 (11)0.0362 (11)0.0388 (11)0.0058 (8)0.0020 (9)0.0052 (9)
C10.0351 (12)0.0299 (12)0.0364 (12)0.0008 (9)0.0082 (10)0.0037 (9)
C20.0409 (13)0.0313 (12)0.0365 (12)0.0030 (10)0.0066 (10)0.0005 (10)
C30.0442 (14)0.0308 (12)0.0473 (14)0.0021 (10)0.0105 (11)0.0017 (10)
C40.0351 (12)0.0369 (13)0.0422 (13)0.0013 (10)0.0099 (10)0.0020 (10)
C50.0451 (14)0.0446 (14)0.0514 (15)0.0114 (11)0.0114 (12)0.0047 (12)
C60.0422 (14)0.0616 (17)0.0448 (15)0.0093 (12)0.0029 (12)0.0051 (12)
C70.0435 (15)0.0634 (18)0.0410 (14)0.0001 (12)0.0041 (12)0.0010 (12)
C80.0463 (14)0.0407 (13)0.0430 (14)0.0013 (11)0.0098 (11)0.0030 (11)
C90.0369 (12)0.0394 (13)0.0342 (12)0.0012 (10)0.0099 (10)0.0025 (10)
C100.0442 (13)0.0275 (11)0.0413 (13)0.0002 (10)0.0113 (11)0.0009 (10)
C110.0379 (12)0.0312 (13)0.0407 (13)0.0006 (10)0.0077 (10)0.0045 (10)
C120.0438 (14)0.0388 (13)0.0395 (13)0.0073 (10)0.0118 (11)0.0009 (10)
C130.0394 (13)0.0432 (13)0.0357 (13)0.0042 (10)0.0086 (10)0.0016 (10)
C140.0427 (14)0.0478 (15)0.0349 (12)0.0048 (11)0.0009 (11)0.0013 (11)
C150.0449 (14)0.0476 (15)0.0469 (14)0.0064 (12)0.0032 (12)0.0020 (12)
C160.0531 (17)0.0645 (18)0.0455 (15)0.0097 (13)0.0052 (12)0.0103 (13)
C170.0573 (17)0.0694 (19)0.0389 (14)0.0010 (14)0.0023 (12)0.0065 (13)
C180.0496 (15)0.0490 (15)0.0418 (14)0.0010 (12)0.0106 (12)0.0036 (11)
C190.0419 (15)0.0561 (17)0.081 (2)0.0104 (12)0.0009 (14)0.0025 (15)
C200.0619 (19)0.066 (2)0.101 (2)0.0174 (15)0.0127 (18)0.0019 (18)
Geometric parameters (Å, º) top
O1—C21.370 (3)C7—C81.362 (3)
O1—H10.8200C7—H70.9300
O2—C111.230 (3)C8—C91.414 (3)
O3—C141.350 (3)C8—H80.9300
O3—H30.8200C9—C101.408 (3)
O4—C151.372 (3)C10—H100.9300
O4—C191.426 (3)C12—C131.457 (3)
N1—C111.346 (3)C12—H120.9300
N1—N21.374 (2)C13—C141.395 (3)
N1—H1A0.900 (10)C13—C181.401 (3)
N2—C121.272 (3)C14—C151.396 (3)
C1—C101.371 (3)C15—C161.377 (3)
C1—C21.434 (3)C16—C171.387 (4)
C1—C111.490 (3)C16—H160.9300
C2—C31.360 (3)C17—C181.369 (3)
C3—C41.407 (3)C17—H170.9300
C3—H3A0.9300C18—H180.9300
C4—C51.413 (3)C19—C201.501 (4)
C4—C91.425 (3)C19—H19A0.9700
C5—C61.358 (3)C19—H19B0.9700
C5—H50.9300C20—H20A0.9600
C6—C71.409 (4)C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C2—O1—H1109.5O2—C11—N1121.5 (2)
C14—O3—H3109.5O2—C11—C1121.1 (2)
C15—O4—C19117.36 (19)N1—C11—C1117.43 (19)
C11—N1—N2118.96 (19)N2—C12—C13120.4 (2)
C11—N1—H1A123.8 (18)N2—C12—H12119.8
N2—N1—H1A117.1 (18)C13—C12—H12119.8
C12—N2—N1118.05 (19)C14—C13—C18119.3 (2)
C10—C1—C2117.73 (19)C14—C13—C12120.6 (2)
C10—C1—C11117.0 (2)C18—C13—C12120.0 (2)
C2—C1—C11125.3 (2)O3—C14—C13123.1 (2)
C3—C2—O1121.6 (2)O3—C14—C15117.0 (2)
C3—C2—C1120.3 (2)C13—C14—C15119.8 (2)
O1—C2—C1118.02 (19)O4—C15—C16125.3 (2)
C2—C3—C4121.9 (2)O4—C15—C14115.2 (2)
C2—C3—H3A119.0C16—C15—C14119.5 (2)
C4—C3—H3A119.0C15—C16—C17120.8 (2)
C3—C4—C5123.0 (2)C15—C16—H16119.6
C3—C4—C9118.7 (2)C17—C16—H16119.6
C5—C4—C9118.3 (2)C18—C17—C16120.0 (2)
C6—C5—C4120.9 (2)C18—C17—H17120.0
C6—C5—H5119.6C16—C17—H17120.0
C4—C5—H5119.6C17—C18—C13120.3 (2)
C5—C6—C7121.0 (2)C17—C18—H18119.8
C5—C6—H6119.5C13—C18—H18119.8
C7—C6—H6119.5O4—C19—C20107.5 (2)
C8—C7—C6119.7 (2)O4—C19—H19A110.2
C8—C7—H7120.2C20—C19—H19A110.2
C6—C7—H7120.2O4—C19—H19B110.2
C7—C8—C9120.9 (2)C20—C19—H19B110.2
C7—C8—H8119.5H19A—C19—H19B108.5
C9—C8—H8119.5C19—C20—H20A109.5
C10—C9—C8122.9 (2)C19—C20—H20B109.5
C10—C9—C4117.9 (2)H20A—C20—H20B109.5
C8—C9—C4119.2 (2)C19—C20—H20C109.5
C1—C10—C9123.3 (2)H20A—C20—H20C109.5
C1—C10—H10118.4H20B—C20—H20C109.5
C9—C10—H10118.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.872.661 (3)161
O3—H3···N20.821.872.589 (3)146
N1—H1A···O10.90 (1)1.95 (2)2.619 (3)130 (2)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H18N2O4
Mr350.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)28.420 (15), 6.456 (5), 18.800 (14)
β (°) 100.658 (10)
V3)3390 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.27 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.972, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
13100, 3503, 2183
Rint0.057
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.178, 1.06
No. of reflections3503
No. of parameters242
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.872.661 (3)161
O3—H3···N20.821.872.589 (3)146
N1—H1A···O10.900 (10)1.95 (2)2.619 (3)130 (2)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We thank Dr Yun-Peng Diao for assistance with the experiment and structure refinement. The project was supported financially by Jilin Medical College.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100–6106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationHuang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchiff, H. (1864). Ann. Chem. Pharm. 131, 118–124.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds