supplementary materials


sj2485 scheme

Acta Cryst. (2008). E64, o935    [ doi:10.1107/S1600536808011483 ]

(E)-1-(4-Fluorophenyl)-3-(4-methylphenyl)prop-2-en-1-one

H.-K. Fun, S. R. Jebas, P. S. Patil, E. D. D'Silva and S. M. Dharmaprakash

Abstract top

The title compound, C16H13FO, adopts an E configuration with respect to the C=C bond of the propenone unit. The dihedral angle between the two benzene rings is 47.0 (5)°. Intramolecular C-H...O hydrogen bonds generate an S(5) ring motif. In the crystal structure, molecules are packed into columns along the c axis and the structure is stabilized by weak intramolecular C-H...O hydrogen bonds and intermolecular C-H...[pi] interactions involving both aromatic rings.

Comment top

Significant studies on applications of chalcones in nonlinear optics have motivated us to further to identify materials, especially chalcone derivatives, with appropriate absorption in the UV region along with a transmission window in the NIR range contributing to multi-photon absorption (Agrinskaya et al., 1999; Gu et al., 2008; Patil et al., 2007a-c). Here we report the crystal structure of the title chalcone derivative, (I), Fig. 1.

In (I), the molecule exhibits an E configuration with respect to the C8C9 double bond with the C7–C8–C9–C10 torsion angle 174.6 (2)°. The bond lengths and angles in (I) are comparable to those observed in related structures (Patil et al., 2007a-c). The dihedral angle between the two benzene rings is 47.0 (2)°.

Intramolecular C—H···O hydrogen bonds generate an S(5) ring motif. In the crystal structure molecules are packed into columns along the c axis and the structure is stabilised by weak intramolecular C—H···O hydrogen bonds and intermolecular C—H···π interactions involving both aromatic rings, Table 1.

Related literature top

For applications of chalcones in non-linear optics, see, for example Agrinskaya et al. (1999); Gu et al. (2008); Patil et al. (2007a,b,c). For related structures see: Patil et al. (2007a,b,c). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). Cg1 is the centroid of the ring C1–C6 and Cg2 is the centroid of the ring C10–C15.

Experimental top

The compound (I) was synthesized by the condensation of p-tolualdehyde (0.01 mol) with 4-fluoroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (4 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. The precipitated compound was recrystallized from acetone.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C–H = 0.93Å for aromatic and 0.96Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Uequ for the remaining hydrogen atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The intramolecular H-bond is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis.
(E)-1-(4-Fluorophenyl)-3-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C16H13FOF000 = 504
Mr = 240.93Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1943 reflections
a = 14.505 (2) Åθ = 2.8–34.6º
b = 14.0523 (18) ŵ = 0.09 mm1
c = 5.8382 (8) ÅT = 100.0 (1) K
β = 92.042 (10)ºPlate, colourless
V = 1189.3 (3) Å30.47 × 0.15 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3442 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.050
T = 100.0(1) Kθmax = 30.0º
φ and ω scansθmin = 2.0º
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 20→16
Tmin = 0.913, Tmax = 0.993k = 19→15
14807 measured reflectionsl = 8→8
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.141  w = 1/[σ2(Fo2) + (0.0591P)2 + 0.1964P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3442 reflectionsΔρmax = 0.36 e Å3
164 parametersΔρmin = 0.26 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
C16H13FOV = 1189.3 (3) Å3
Mr = 240.93Z = 4
Monoclinic, P21/cMo Kα
a = 14.505 (2) ŵ = 0.09 mm1
b = 14.0523 (18) ÅT = 100.0 (1) K
c = 5.8382 (8) Å0.47 × 0.15 × 0.07 mm
β = 92.042 (10)º
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3442 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2256 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.993Rint = 0.050
14807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055164 parameters
wR(F2) = 0.141H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
3442 reflectionsΔρmin = 0.26 e Å3
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.13263 (6)0.62202 (8)0.22333 (18)0.0335 (3)
O10.52448 (8)0.62178 (9)0.19348 (19)0.0299 (3)
C10.37893 (11)0.59097 (11)0.2869 (3)0.0223 (3)
H1A0.42270.56970.39550.027*
C20.28643 (11)0.58906 (11)0.3360 (3)0.0226 (4)
H2A0.26710.56570.47540.027*
C30.22364 (11)0.62262 (11)0.1734 (3)0.0225 (4)
C40.24829 (11)0.65754 (11)0.0361 (3)0.0235 (4)
H4A0.20410.68040.14150.028*
C50.34102 (11)0.65749 (11)0.0847 (3)0.0211 (3)
H5A0.35940.67970.22600.025*
C60.40712 (10)0.62458 (11)0.0752 (3)0.0193 (3)
C70.50568 (11)0.62320 (11)0.0105 (3)0.0220 (3)
C80.57812 (11)0.62535 (11)0.1937 (3)0.0229 (3)
H8A0.56280.64130.34230.027*
C90.66551 (11)0.60475 (11)0.1492 (3)0.0203 (3)
H9A0.67640.58400.00140.024*
C100.74563 (10)0.61113 (10)0.3059 (3)0.0192 (3)
C110.83138 (10)0.57998 (11)0.2337 (3)0.0202 (3)
H11A0.83540.55130.09080.024*
C120.91061 (11)0.59096 (11)0.3709 (3)0.0216 (3)
H12A0.96680.56950.31890.026*
C130.90722 (11)0.63365 (11)0.5856 (3)0.0211 (3)
C140.82142 (11)0.66329 (11)0.6599 (3)0.0210 (3)
H14A0.81760.69130.80370.025*
C150.74201 (11)0.65200 (11)0.5248 (3)0.0207 (3)
H15A0.68560.67170.57950.025*
C160.99320 (12)0.64989 (13)0.7314 (3)0.0290 (4)
H16A1.04510.62250.65770.044*
H16B0.98660.62050.87840.044*
H16C1.00290.71700.75120.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0209 (5)0.0457 (7)0.0340 (6)0.0022 (4)0.0031 (4)0.0022 (5)
O10.0265 (6)0.0434 (8)0.0196 (6)0.0016 (5)0.0013 (5)0.0004 (5)
C10.0258 (8)0.0201 (8)0.0207 (8)0.0015 (6)0.0029 (6)0.0004 (6)
C20.0279 (8)0.0209 (8)0.0192 (8)0.0029 (6)0.0017 (6)0.0011 (6)
C30.0198 (8)0.0213 (8)0.0264 (9)0.0011 (6)0.0016 (6)0.0017 (7)
C40.0240 (8)0.0235 (8)0.0226 (8)0.0001 (6)0.0044 (6)0.0007 (7)
C50.0256 (8)0.0215 (8)0.0160 (8)0.0026 (6)0.0013 (6)0.0001 (6)
C60.0216 (8)0.0178 (8)0.0184 (8)0.0012 (6)0.0011 (6)0.0024 (6)
C70.0243 (8)0.0213 (8)0.0203 (8)0.0003 (6)0.0006 (6)0.0005 (7)
C80.0241 (8)0.0259 (9)0.0185 (8)0.0001 (6)0.0007 (6)0.0017 (7)
C90.0241 (8)0.0189 (8)0.0180 (8)0.0015 (6)0.0007 (6)0.0005 (6)
C100.0218 (8)0.0171 (8)0.0185 (8)0.0016 (6)0.0005 (6)0.0023 (6)
C110.0246 (8)0.0199 (8)0.0160 (8)0.0009 (6)0.0012 (6)0.0002 (6)
C120.0204 (8)0.0211 (8)0.0235 (8)0.0026 (6)0.0017 (6)0.0003 (6)
C130.0233 (8)0.0195 (8)0.0203 (8)0.0006 (6)0.0017 (6)0.0020 (6)
C140.0274 (8)0.0192 (8)0.0163 (8)0.0002 (6)0.0001 (6)0.0000 (6)
C150.0217 (8)0.0204 (8)0.0202 (8)0.0009 (6)0.0029 (6)0.0013 (6)
C160.0277 (9)0.0317 (10)0.0273 (9)0.0009 (7)0.0041 (7)0.0021 (7)
Geometric parameters (Å, °) top
F1—C31.3621 (17)C9—C101.456 (2)
O1—C71.2315 (18)C9—H9A0.9300
C1—C21.382 (2)C10—C111.398 (2)
C1—C61.398 (2)C10—C151.404 (2)
C1—H1A0.9300C11—C121.386 (2)
C2—C31.375 (2)C11—H11A0.9300
C2—H2A0.9300C12—C131.392 (2)
C3—C41.377 (2)C12—H12A0.9300
C4—C51.385 (2)C13—C141.396 (2)
C4—H4A0.9300C13—C161.502 (2)
C5—C61.393 (2)C14—C151.382 (2)
C5—H5A0.9300C14—H14A0.9300
C6—C71.492 (2)C15—H15A0.9300
C7—C81.473 (2)C16—H16A0.9600
C8—C91.335 (2)C16—H16B0.9600
C8—H8A0.9300C16—H16C0.9600
C2—C1—C6120.43 (15)C10—C9—H9A116.3
C2—C1—H1A119.8C11—C10—C15117.72 (14)
C6—C1—H1A119.8C11—C10—C9119.37 (14)
C3—C2—C1118.31 (14)C15—C10—C9122.83 (14)
C3—C2—H2A120.8C12—C11—C10121.27 (14)
C1—C2—H2A120.8C12—C11—H11A119.4
F1—C3—C2118.24 (14)C10—C11—H11A119.4
F1—C3—C4118.47 (14)C11—C12—C13120.90 (14)
C2—C3—C4123.28 (15)C11—C12—H12A119.6
C3—C4—C5117.83 (15)C13—C12—H12A119.6
C3—C4—H4A121.1C12—C13—C14117.96 (15)
C5—C4—H4A121.1C12—C13—C16121.36 (14)
C4—C5—C6120.87 (14)C14—C13—C16120.66 (14)
C4—C5—H5A119.6C15—C14—C13121.50 (15)
C6—C5—H5A119.6C15—C14—H14A119.2
C5—C6—C1119.26 (14)C13—C14—H14A119.2
C5—C6—C7118.51 (13)C14—C15—C10120.61 (14)
C1—C6—C7122.19 (14)C14—C15—H15A119.7
O1—C7—C8121.73 (14)C10—C15—H15A119.7
O1—C7—C6119.49 (15)C13—C16—H16A109.5
C8—C7—C6118.77 (14)C13—C16—H16B109.5
C9—C8—C7120.80 (15)H16A—C16—H16B109.5
C9—C8—H8A119.6C13—C16—H16C109.5
C7—C8—H8A119.6H16A—C16—H16C109.5
C8—C9—C10127.36 (15)H16B—C16—H16C109.5
C8—C9—H9A116.3
C6—C1—C2—C31.2 (2)C6—C7—C8—C9166.14 (15)
C1—C2—C3—F1179.03 (13)C7—C8—C9—C10174.61 (15)
C1—C2—C3—C40.3 (2)C8—C9—C10—C11175.44 (15)
F1—C3—C4—C5179.85 (13)C8—C9—C10—C157.9 (3)
C2—C3—C4—C50.8 (3)C15—C10—C11—C121.5 (2)
C3—C4—C5—C61.0 (2)C9—C10—C11—C12175.34 (14)
C4—C5—C6—C10.2 (2)C10—C11—C12—C130.1 (2)
C4—C5—C6—C7178.00 (14)C11—C12—C13—C141.2 (2)
C2—C1—C6—C50.9 (2)C11—C12—C13—C16177.22 (15)
C2—C1—C6—C7176.76 (15)C12—C13—C14—C150.8 (2)
C5—C6—C7—O122.4 (2)C16—C13—C14—C15177.69 (14)
C1—C6—C7—O1155.31 (16)C13—C14—C15—C100.8 (2)
C5—C6—C7—C8156.49 (15)C11—C10—C15—C141.9 (2)
C1—C6—C7—C825.8 (2)C9—C10—C15—C14174.78 (14)
O1—C7—C8—C915.0 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.932.502.820 (2)100
C5—H5A···Cg1i0.932.963.525120
C9—H9A···Cg1ii0.933.023.604123
C2—H2A···Cg2iii0.933.013.635126
C14—H14A···Cg2iv0.932.763.452132
Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z; (iv) x, −y−1/2, z−3/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.932.502.820 (2)100
C5—H5A···Cg1i0.932.963.525120
C9—H9A···Cg1ii0.933.023.604123
C2—H2A···Cg2iii0.933.013.635126
C14—H14A···Cg2iv0.932.763.452132
Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z; (iv) x, −y−1/2, z−3/2.
Acknowledgements top

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship. This work is supported by the Department of Science and Technology (DST), Government of India (Grant No.SR/S2/LOP-17/2006).

references
References top

Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2005). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.

Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118–091120.

Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007a). J. Cryst. Growth, 303, 520–524.

Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007c). Acta Cryst. E63, o2497–o2498.

Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o3238.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. 36/, 7–13.