organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 9H-xanthene-9-carboxyl­ate

aSchool of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
*Correspondence e-mail: pamela.dean@sci.monash.edu.au

(Received 20 February 2008; accepted 4 March 2008; online 16 April 2008)

The title compound, C15H12O3, was obtained unintentionally as the by-product of an attempted recrystallization from methanol of propantheline bromide, an anti­muscarinic drug. The xanthone unit is folded, with a dihedral angle of 24.81 (9)° between the benzene rings. The ester substituent adopts a trans staggered conformation, with a C—C—O—C torsion angle of 178.4 (1)°. The mol­ecules pack in distinct layers, facilitated by C—H⋯π and weak ππ ring inter­actions. A weak C—H⋯O inter­action also occurs; however, no classical hydrogen bonding is observed.

Related literature

For details of the first spectroscopic evidence of the trans­esterification of propantheline bromide by methanol to 9H-xanthene-9-carboxylic acid methyl ester, see: Avdovich et al. (1986[Avdovich, H. W., By, A. W., Ethier, J. C. & Neville, G. A. (1986). J. Forensic Sci. Soc. 19, 241-249.]). For a description of the comparative effectiveness of propantheline bromide for the treatment of neurogenic detrusor overactivity, see: George et al. (2007[George, J., Tharion, G., Richard, J., Macaden, A. S., Thomas, R. & Bhattacharji, S. (2007). The Scientific World Journal, 7, 1683-1690.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O3

  • Mr = 240.25

  • Monoclinic, C 2/c

  • a = 25.6601 (16) Å

  • b = 5.7624 (3) Å

  • c = 15.7578 (9) Å

  • β = 92.933 (4)°

  • V = 2327.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 (2) K

  • 0.50 × 0.50 × 0.50 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.954

  • 11906 measured reflections

  • 2672 independent reflections

  • 1985 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.106

  • S = 1.05

  • 2672 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O2i 0.98 2.53 3.407 (3) 149
C3—H3⋯Cg2ii 0.95 2.95 3.668 (2) 133
C11—H11⋯Cg1iii 0.95 3.18 3.825 (2) 127
C15—H15BCg1iv 0.98 3.06 3.432 (2) 104
C15—H15CCg1iv 0.98 3.11 3.432 (2) 101
Symmetry codes: (i) x, y-1, z; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) -x+1, -y, -z+1. Cg1 is the centroid of ring C1–C6; Cg2 is the centroid of ring C8–C13.

Table 2
Geometrical parameters (Å, °) of the inter-ring ππ interactions

CgI CgJ CgCg α Symmetry position of CgJ
Cg1 Cg2 5.590 (1) 59.44 x, 1 − y, [-{\script{1\over 2}}] + z
Cg1 Cg2 4.944 (1) 24.81 [{\script{1\over 2}}]x, [{\script{1\over 2}}]y, 1 − z
Cg2 Cg1 4.863 (1) 59.44 x, −y, [{\script{1\over 2}}] + z
Cg2 Cg2 3.684 (1) 0.03 [{\script{1\over 2}}]x, [{\script{1\over 2}}]y, 1 − z
α is the dihedral angle between planes I and J, CgI is the centroid of plane I and CgJ the centroid of plane J. Cg1 is the centroid of ring C1–C6; Cg2 is the centroid of ring C8–C13.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: POV-RAY for Windows (Persistence of Vision, 1999[Persistence of Vision (1999). POV-RAY for Windows. Persistence of Vision Development Team, Victoria, Australia.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

It was found that propantheline bromide (George et al., 2007) undergoes facile transesterification by methanol to produce the by-product 9H-xanthene-9-carboxylic acid methyl ester (Avdovich et al., 1986). Surprisingly, the structural elucidation of this analogue (Fig. 1) has not been reported in the literature until now. Now the structural determination and analysis is briefly described.

The xanthone unit is bent, with the aromatic planes oriented to each other by an interplanar angle of 24.81 (9)°. The ester substituent adopts a trans staggered conformation with a C7—C14—O3—C15 torsion angle of 178.4 (1)°. Additionally, as is typical of an ester, the O3—C14 distance is 1.326 (2) Å and the O3—C15 distance is 1.448 (2) Å, indicating the sp2 hybridization of C14.

The overall packing is shown in Fig. 2. Molecules are related by centres of symmetry, resulting in a head-to-head arrangement, that packs in aromatic and non-aromatic layers lying parallel to the (100) plane. Fig. 2 displays the orientation of the molecules, facilitating the weak C—H···O hydrogen bonding between the methyl and carbonyl groups (distance: C15—H15C···O2i (i = x,y - 1,z) 3.407 (2) Å - see Table 1) and the C—H···π and weak π···π ring interactions (Table 2). A short range contact, 2.683 (2) Å, also occurs between the aromatic C4—H4 and the carbonyl oxygen O2 (distance: C4—H4···O2ii (ii = x,1 - y,-1/2 + z).

Related literature top

For details of the first spectroscopic evidence of the transesterification of propantheline bromide by methanol to 9H-xanthene-9-carboxylic acid methyl ester, see: Avdovich et al. (1986). For a description of the comparative effectiveness of propantheline bromide for the treatment of neurogenic detrusor overactivity, see: George et al. (2007).

Experimental top

The title compound was obtained unintentionally as the product of an attempted recrystallization of propantheline bromide (50 mg) in methanol (2 ml) at room temperature. Crystals resulted after 6 days; these were coated with Paratone N oil (Exxon Chemical Co., TX, USA) immediately after isolation and cooled in a stream of nitrogen vapour on the diffractometer. Melting point: 360.7 K.

Refinement top

All H atoms were observed in difference syntheses and were then placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å. Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other C atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: POV-RAY for Windows (Persistence of Vision, 1999); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms as spheres of arbitrary radius.
[Figure 2] Fig. 2. A ball-and-stick representation of the unit-cell contents, viewed down the b axis.
Methyl 9H-xanthene-9-carboxylate top
Crystal data top
C15H12O3F(000) = 1008
Mr = 240.25Dx = 1.372 Mg m3
Monoclinic, C2/cMelting point: 360.7 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.6601 (16) ÅCell parameters from 1829 reflections
b = 5.7624 (3) Åθ = 2.6–25.8°
c = 15.7578 (9) ŵ = 0.10 mm1
β = 92.933 (4)°T = 123 K
V = 2327.0 (2) Å3Prismatic, colourless
Z = 80.50 × 0.50 × 0.50 mm
Data collection top
Bruker KappaAPEXII
diffractometer
2672 independent reflections
Radiation source: fine-focus sealed tube1985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
0.5° frames in ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3333
Tmin = 0.932, Tmax = 0.954k = 77
11906 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0212P)2 + 2.7981P]
where P = (Fo2 + 2Fc2)/3
2672 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H12O3V = 2327.0 (2) Å3
Mr = 240.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.6601 (16) ŵ = 0.10 mm1
b = 5.7624 (3) ÅT = 123 K
c = 15.7578 (9) Å0.50 × 0.50 × 0.50 mm
β = 92.933 (4)°
Data collection top
Bruker KappaAPEXII
diffractometer
2672 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1985 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.954Rint = 0.050
11906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
2672 reflectionsΔρmin = 0.21 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33199 (5)0.0433 (2)0.46758 (8)0.0291 (4)
O30.44741 (5)0.1331 (2)0.55663 (8)0.0317 (4)
C10.35919 (6)0.0509 (3)0.40209 (11)0.0246 (4)
O20.46182 (5)0.5104 (2)0.57999 (10)0.0460 (5)
C50.41061 (7)0.3418 (3)0.33969 (11)0.0296 (5)
H50.42850.48600.34320.036*
C80.34065 (6)0.3209 (3)0.54356 (11)0.0270 (5)
C140.43644 (7)0.3568 (3)0.54706 (11)0.0269 (4)
C90.32151 (7)0.4651 (4)0.60572 (11)0.0340 (5)
H90.33740.61170.61660.041*
C40.40994 (7)0.2167 (4)0.26464 (12)0.0344 (5)
H40.42750.27440.21740.041*
C20.35812 (7)0.0765 (3)0.32741 (11)0.0296 (5)
H20.34000.22020.32360.036*
C120.27490 (7)0.0372 (4)0.57561 (11)0.0320 (5)
H120.25910.10990.56530.038*
C100.27969 (7)0.3977 (4)0.65182 (12)0.0404 (6)
H100.26680.49830.69360.048*
C110.25674 (7)0.1837 (4)0.63695 (12)0.0383 (6)
H110.22820.13690.66910.046*
C30.38359 (7)0.0071 (4)0.25876 (12)0.0336 (5)
H30.38310.07920.20740.040*
C60.38552 (6)0.2600 (3)0.41010 (11)0.0255 (4)
C70.38629 (7)0.3930 (3)0.49288 (11)0.0265 (5)
H70.38280.56220.47960.032*
C130.31655 (6)0.1086 (3)0.52950 (11)0.0266 (4)
C150.49380 (7)0.0797 (4)0.60921 (12)0.0349 (5)
H15A0.49110.15050.66540.052*
H15B0.52450.14150.58250.052*
H15C0.49720.08890.61540.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0329 (7)0.0252 (7)0.0294 (7)0.0015 (5)0.0027 (5)0.0008 (5)
O30.0293 (7)0.0257 (7)0.0385 (8)0.0029 (6)0.0121 (5)0.0011 (6)
C10.0234 (8)0.0252 (10)0.0251 (9)0.0051 (7)0.0011 (7)0.0002 (7)
O20.0419 (8)0.0328 (8)0.0611 (10)0.0017 (7)0.0166 (7)0.0116 (7)
C50.0264 (9)0.0298 (10)0.0324 (10)0.0028 (8)0.0027 (7)0.0057 (8)
C80.0260 (9)0.0296 (10)0.0248 (9)0.0088 (7)0.0044 (7)0.0016 (7)
C140.0281 (9)0.0249 (10)0.0276 (9)0.0000 (8)0.0010 (7)0.0043 (8)
C90.0329 (10)0.0396 (12)0.0284 (10)0.0133 (9)0.0089 (8)0.0074 (8)
C40.0309 (10)0.0457 (13)0.0267 (10)0.0086 (9)0.0019 (7)0.0050 (9)
C20.0288 (9)0.0280 (10)0.0314 (10)0.0060 (8)0.0048 (7)0.0042 (8)
C120.0286 (9)0.0384 (11)0.0285 (10)0.0052 (8)0.0038 (7)0.0087 (8)
C100.0360 (10)0.0603 (15)0.0245 (10)0.0203 (10)0.0028 (8)0.0072 (9)
C110.0298 (10)0.0604 (15)0.0246 (10)0.0124 (10)0.0005 (7)0.0091 (9)
C30.0321 (10)0.0426 (12)0.0254 (10)0.0111 (9)0.0044 (7)0.0061 (8)
C60.0248 (8)0.0244 (10)0.0267 (9)0.0050 (7)0.0040 (7)0.0002 (7)
C70.0310 (9)0.0204 (9)0.0277 (9)0.0051 (7)0.0037 (7)0.0015 (7)
C130.0279 (9)0.0303 (10)0.0210 (9)0.0082 (8)0.0030 (7)0.0017 (7)
C150.0261 (9)0.0417 (12)0.0361 (11)0.0036 (8)0.0071 (8)0.0010 (9)
Geometric parameters (Å, º) top
O1—C131.384 (2)C4—C31.385 (3)
O1—C11.386 (2)C4—H40.9500
O3—C141.326 (2)C2—C31.379 (3)
O3—C151.448 (2)C2—H20.9500
C1—C61.384 (2)C12—C111.382 (3)
C1—C21.386 (2)C12—C131.385 (2)
O2—C141.201 (2)C12—H120.9500
C5—C41.384 (3)C10—C111.381 (3)
C5—C61.393 (2)C10—H100.9500
C5—H50.9500C11—H110.9500
C8—C131.384 (3)C3—H30.9500
C8—C91.393 (2)C6—C71.512 (2)
C8—C71.509 (2)C7—H71.0000
C14—C71.522 (2)C15—H15A0.9800
C9—C101.382 (3)C15—H15B0.9800
C9—H90.9500C15—H15C0.9800
C13—O1—C1116.79 (14)C11—C10—H10120.1
C14—O3—C15115.78 (14)C9—C10—H10120.1
C6—C1—O1122.37 (15)C10—C11—C12120.52 (18)
C6—C1—C2121.80 (16)C10—C11—H11119.7
O1—C1—C2115.83 (16)C12—C11—H11119.7
C4—C5—C6121.21 (18)C2—C3—C4120.11 (17)
C4—C5—H5119.4C2—C3—H3119.9
C6—C5—H5119.4C4—C3—H3119.9
C13—C8—C9117.98 (17)C1—C6—C5117.73 (16)
C13—C8—C7120.76 (15)C1—C6—C7120.31 (16)
C9—C8—C7121.26 (17)C5—C6—C7121.95 (16)
O2—C14—O3124.06 (17)C8—C7—C6109.91 (15)
O2—C14—C7124.42 (16)C8—C7—C14108.79 (14)
O3—C14—C7111.45 (15)C6—C7—C14112.80 (14)
C10—C9—C8120.9 (2)C8—C7—H7108.4
C10—C9—H9119.6C6—C7—H7108.4
C8—C9—H9119.6C14—C7—H7108.4
C5—C4—C3119.72 (18)C8—C13—O1122.03 (15)
C5—C4—H4120.1C8—C13—C12121.96 (17)
C3—C4—H4120.1O1—C13—C12116.00 (17)
C3—C2—C1119.42 (18)O3—C15—H15A109.5
C3—C2—H2120.3O3—C15—H15B109.5
C1—C2—H2120.3H15A—C15—H15B109.5
C11—C12—C13118.81 (19)O3—C15—H15C109.5
C11—C12—H12120.6H15A—C15—H15C109.5
C13—C12—H12120.6H15B—C15—H15C109.5
C11—C10—C9119.83 (18)
C13—O1—C1—C621.8 (2)C13—C8—C7—C622.5 (2)
C13—O1—C1—C2157.71 (15)C9—C8—C7—C6157.52 (16)
C15—O3—C14—O21.3 (3)C13—C8—C7—C14101.48 (18)
C15—O3—C14—C7178.43 (14)C9—C8—C7—C1478.5 (2)
C13—C8—C9—C100.0 (3)C1—C6—C7—C822.1 (2)
C7—C8—C9—C10179.99 (16)C5—C6—C7—C8157.52 (16)
C6—C5—C4—C30.5 (3)C1—C6—C7—C1499.48 (19)
C6—C1—C2—C30.5 (3)C5—C6—C7—C1480.9 (2)
O1—C1—C2—C3179.03 (15)O2—C14—C7—C8105.6 (2)
C8—C9—C10—C110.6 (3)O3—C14—C7—C871.48 (18)
C9—C10—C11—C120.7 (3)O2—C14—C7—C6132.14 (19)
C13—C12—C11—C100.1 (3)O3—C14—C7—C650.7 (2)
C1—C2—C3—C40.0 (3)C9—C8—C13—O1178.26 (15)
C5—C4—C3—C20.0 (3)C7—C8—C13—O11.7 (2)
O1—C1—C6—C5178.53 (15)C9—C8—C13—C120.6 (3)
C2—C1—C6—C51.0 (2)C7—C8—C13—C12179.41 (16)
O1—C1—C6—C71.1 (2)C1—O1—C13—C821.5 (2)
C2—C1—C6—C7179.37 (15)C1—O1—C13—C12157.43 (15)
C4—C5—C6—C11.0 (2)C11—C12—C13—C80.5 (3)
C4—C5—C6—C7179.39 (16)C11—C12—C13—O1178.37 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.982.533.407 (3)149
C3—H3···Cg2ii0.952.953.668 (2)133
C11—H11···Cg1iii0.953.183.825 (2)127
C15—H15B···Cg1iv0.983.063.432 (2)104
C15—H15C···Cg1iv0.983.113.432 (2)101
Symmetry codes: (i) x, y1, z; (ii) x, y, z1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H12O3
Mr240.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)25.6601 (16), 5.7624 (3), 15.7578 (9)
β (°) 92.933 (4)
V3)2327.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.50 × 0.50
Data collection
DiffractometerBruker KappaAPEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.932, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
11906, 2672, 1985
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.106, 1.06
No. of reflections2672
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), POV-RAY for Windows (Persistence of Vision, 1999), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.982.533.407 (3)149
C3—H3···Cg2ii0.952.953.668 (2)133
C11—H11···Cg1iii0.953.183.825 (2)127
C15—H15B···Cg1iv0.983.063.432 (2)104
C15—H15C···Cg1iv0.983.113.432 (2)101
Symmetry codes: (i) x, y1, z; (ii) x, y, z1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y, z+1.
Geometrical parameters (Å, °) of the inter-ring ππ interactions. α is the dihedral angle between planes I and J, CgI is the centroid of plane I and CgJ the centroid of plane J. top
CgICgJCg···CgαSymmetry position of CgJ
Cg1Cg25.590 (1)59.44x,1-y,-1/2+z
Cg1Cg24.944 (1)24.811/2-x,1/2-y,1-z
Cg2Cg14.863 (1)59.44x,-y,1/2+z
Cg2Cg23.684 (1)0.031/2-x,1/2-y,1-z
Notes: Cg1 is the centroid of ring C1/C6; Cg2 is the centroid of ring C8/C13.
 

Acknowledgements

PMD is grateful to Monash University for the Monash Graduate Scholarship and Monash International Postgraduate Research Scholarship, and to Monash University, School of Chemistry for funding for JT.

References

First citationAvdovich, H. W., By, A. W., Ethier, J. C. & Neville, G. A. (1986). J. Forensic Sci. Soc. 19, 241–249.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeorge, J., Tharion, G., Richard, J., Macaden, A. S., Thomas, R. & Bhattacharji, S. (2007). The Scientific World Journal, 7, 1683–1690.  CrossRef CAS Google Scholar
First citationPersistence of Vision (1999). POV-RAY for Windows. Persistence of Vision Development Team, Victoria, Australia.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds