organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o791-o792

2,2′-(Imino­di­methyl­ene)dibenz­imid­azol­ium bis­­(perchlorate) methanol solvate

aKey Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: mengxianggao@mail.ccnu.edu.cn

(Received 25 March 2008; accepted 31 March 2008; online 2 April 2008)

In the title compound, C16H17N52+·2ClO4·CH3OH, the dihedral angle between the two benzimidazolium ring systems is 34.6 (1)°. The anions and solvent mol­ecules are linked to the cation by N—H⋯O hydrogen bonds. In the crystal structure, the combination of N—H⋯O and O—H⋯O hydrogen bonds results in two-dimensional layers running parallel to the (010) plane; these are in turn linked by ππ inter­actions, forming a three-dimensional network.

Related literature

For related literature, see: Adams et al. (1990[Adams, H., Bailey, N. A., Carane, J. D., Fenton, D.-E., Latour, J.-M. & Williams, J. M. (1990). J. Chem. Soc. Dalton Trans. pp. 1727-1735.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Berends & Stephan (1984[Berends, H. P. & Stephan, D. W. (1984). Inorg. Chim. Acta, 93, 173-178.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); Girasolo et al. (2000[Girasolo, M.-A., Pizzino, T., Mansueto, C., Valle, G. & Stocco, G.-C. (2000). Appl. Organomet. Chem. 14, 197-211.]); Liao et al. (2001[Liao, Z.-R., Zheng, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-L. & Zhao, W. (2001). Polyhedron, 20, 2813-2821.]); Liu et al. (2004[Liu, X.-H., Sun, Y., Yue, J.-J. & Liu, X.-L. (2004). J. Tianjin Normal Univ. (Nat. Sci. Ed.), 24, 1-2.]); Meng et al. (2005[Meng, X.-G., Mei, F.-S. & Liao, Z.-R. (2005). Acta Cryst. E61, o3047-o3049.], 2006a[Meng, X.-G., Mei, F.-S. & Liao, Z.-R. (2006a). Acta Cryst. E62, o4120-o4122.],b[Meng, X.-G., Mei, F.-S. & Liao, Z.-R. (2006b). Acta Cryst. E62, o3989-o3991.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); Tarazon Navarro & McKee (2003[Tarazon Navarro, A. & McKee, V. (2003). Acta Cryst. E59, o1199-o1201.]); Xu et al. (2007[Xu, J.-Y., Tian, J.-L., Bian, H.-D., Yan, S.-P., Liao, D.-Z., Cheng, P. & Shen, P.-W. (2007). Appl. Organomet. Chem. 21, 129-134.]); Young et al. (1995[Young, M.-J., Wahnon, D., Hynes, R.-C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441-9447.]); Zheng et al. (2005[Zheng, S.-R., Cai, Y.-P., Zhang, X.-L. & Su, C.-Y. (2005). Acta Cryst. C61, o642-o644.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N52+·2ClO4·CH4O

  • Mr = 510.29

  • Monoclinic, P 21 /n

  • a = 8.3359 (4) Å

  • b = 18.0323 (8) Å

  • c = 14.8532 (7) Å

  • β = 102.944 (1)°

  • V = 2175.89 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 295 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.900, Tmax = 0.932

  • 24553 measured reflections

  • 4957 independent reflections

  • 3479 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.169

  • S = 1.02

  • 4957 reflections

  • 317 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O7i 0.86 (3) 2.42 (3) 3.200 (3) 150 (2)
N2—H2A⋯O8 0.831 (16) 2.15 (2) 2.895 (3) 150 (3)
N2—H2A⋯O9 0.831 (16) 2.489 (19) 3.233 (3) 150 (2)
N3—H3A⋯O1 0.831 (16) 1.996 (17) 2.799 (3) 162 (2)
N4—H4A⋯O1 0.857 (16) 1.985 (17) 2.823 (3) 166 (2)
N5—H5A⋯O4 0.824 (16) 2.46 (2) 3.197 (4) 150 (2)
N5—H5A⋯O5 0.824 (16) 2.21 (2) 2.939 (3) 147 (2)
O1—H1C⋯O6ii 0.805 (17) 2.00 (2) 2.765 (3) 159 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Table 2 ππ Stacking interactions (°, Å)

Cgi Cgj Dihedral angle CCD Interplanar spacing
Cg1 Cg2iv 0.42 3.854 (2) 3.349 (2)
Cg1 Cg4iv 0.35 3.557 (2) 3.354 (2)
Cg3 Cg2iv 0.85 3.612 (2) 3.360 (2)
Cg3 Cg4v 0.36 3.929 (2) 3.453 (2)
CCD is the centroid-to-centroid distance; Cg1 is the centroid of atoms N2/N3/C2/C3/C8; Cg2 is the centroid of atoms N4/N5/C10/C11/C16; Cg3 is the centroid of atoms C3–C8; Cg4 is the centroid of atoms C11–C16. Symmetry codes: (iv) [{\script{1\over 2}} - x, -{\script{1\over 2}} + y, {\script{1\over 2}} - z]; (v) [{\script{1\over 2}} - x, -{\script{1\over 2}} + y, {\script{1\over 2}} - z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Bis[N-(benzimidazol-2-ylmethyl)]amine (IDB) and its analogs have been utilized extensively in the synthesis of various metal complexes to mimic certain biological activities; these include superoxide dismutase (Liao et al., 2001), DNA probe (Girasolo et al., 2000), alkaline phosphatase (Young et al., 1995). In IDB, each benzimidazole (bzim) arm possesses one imine N atom, one amine NH group and, at the centre, an NH group. The two imine N atoms can chelate metal ions, while the three NH groups can act as hydrogen bond donors. In the absence of metal coordination, the two imine N atoms can also act as hydrogen bond acceptors. The easily formed coordination and hydrogen-bonding interactions allow the central acyclic —CH2—NH—CH2– unit to possess various steric arrangements. In our and other reported organic complex analogs (Meng et al., 2006a; Meng et al., 2006b; Meng et al., 2005; Zheng et al., 2005; Liu et al., 2004; Tarazon Navarro et al., 2003) we find that IDB preferentially adopts a more extended conformation, with the two bzim groups pointing away from each other. However, in most examples of metal-complexes it adopts a more crowded conformation, with the two bzim units bending towards the same side of the central acyclic linkage (Berends & Stephan, 1984; Xu et al., 2007; Adams et al., 1990). With the aim of gaining more insight into the influence of solvents and anions on the crystal structure, we have synthesized H2IDB2+.2ClO4-.CH3OH and report its molecular and supramolecular structure in this communication.

The two imine N atoms on both bzim arms are protonated, as confirmed by the residual electron peaks around the imine N atoms during the structure refinement. The positive charge on each imine N atom is delocalized in the imidazole ring, as evidenced by the near equivalence of bonds C2—N2/C2—N3 [1.323 (3)/1.320 (3) Å] and C10—N4/C10—N5 [1.330 (3)/1.32 6(3) Å]. These values lie within the range of C—N single bond [1.357 (2) Å] and CN double bond [1.318 (2) Å] determined at low temperature by Tarazon Navarro & McKee (2003). In the title compound, the dication adopts a somewhat folded conformation and the dihedral angle between two bzim groups is 34.6 (1)°. This angle is comparable with those in (IDB).(H2O)4 [36.2 (1)° and 39.7 (1) °; Meng et al. (2006a)] and (IDB)2.(H2O)2.C2H5OH [26.8 (1)° and 25.8 (1)°; Meng et al. (2006b)], but considerably larger those in IDB [0.0°; Tarazon Navarro & McKee (2003)], HIDB+.Cl- [5.4 (1)°; Zheng et al. (2005)], HIDB+.ClO4- [3.7 (1)°; Liu et al. (2004)] and H2IDB2+.SO42- [3.3 (1)°; Meng et al. (2005)].

Two imine N atoms (N2 and N5) act as hydrogen bond donors, via atoms H2A and H5A, respectively, to atoms O8/O9 and O4/O5, thereby generating four hydrogen bonds, each two forming an R21(4) (Fig.1) motif (Bernstein et al., 1995). The other two N atoms (N3 and N4) on bzim also act as hydrogen bond donors, forming intermolecular hydrogen bonds of R12(10) motif, to the methanol solvent molecule. The methanol molecule donates its hydroxyl H atom to atom O6, forming a relatively strong O—H···O hydrogen bond. There is a pseudo-mirror plane passing through the central NH group and the solvent C and O atoms.

In the crystal structure, the component ions are assembled into a three-dimensional network by a combination of N—H···O, O—H···O hydrogen bonds and π-π interactions which can be analyzed in terms of several substructures. Firstly, by the six cooperative hydrogen-bonding interactions (Table 1), the discrete dications, anions and methanol molecules are joined together, forming a relatively independent neutral unit. These neutral units are linked together by N1···O7 (-1/2 + x,1/2 - y,-1/2 + z) and O1···O6 (1/2 + x,1/2 - y,-1/2 + z) hydrogen bonds related by the n-glide plane at y =1/4, forming a two-dimensional layer parallel to the (010) plane in the domain of -0.259 < y < 0.759 (Fig.2). Secondly, by ππ stacking interactions, adjacent two-dimensional layers are interlinked into a simple three-dimensional network. The geometric details of the ππ stacking interactions are listed in Table 2. A CSD (Version 1.9, September 2006 release; Allen, 2002; Bruno et al., 2002) study indicates that ππ stacking interactions play a critical role in stabilizing the crystal structures of organic and metal-organic compounds containing poly-bzim groups. For instance, in HIDB+.ClO4- (Liu et al., 2004), the N—H···N and N—H···O hydrogen bonds link the component ions into one-dimensional chains. However, ππ stacking interactions between adjacent bzim groups link the molecules into a three-dimensional network.

Related literature top

For related literature, see: Adams et al. (1990); Allen (2002); Berends & Stephan (1984); Bernstein et al. (1995); Bruno et al. (2002); Girasolo et al. (2000); Liao et al. (2001); Liu et al. (2004); Meng et al. (2005, 2006a, 2006b); Spek (2003); Tarazon Navarro & McKee (2003); Xu et al. (2007); Young et al. (1995); Zheng et al. (2005).

Experimental top

All the reagents and solvents were used as obtained without further purification. Bis(benzimidazol-2-yl-methyl)amine (IDB) was prepared according to the method described by Adams et al. (1990). 2 g of the powdered title compound were dissolved in 15 ml methanol and adjusted to pH 5 using HClO4. Colorless crystals were obtained as blocks by slowly evaporating the solvent over a period of several days.

Refinement top

H atoms bonded to C atoms were located in difference maps and subsequently treated as riding, with C—H distances of 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96 Å (methyl); Uiso(H) = 1.2Ueq(aromatic and methylene C) or 1.5Ueq(methyl C). H atoms bonded to N and methanol O atoms were also found in difference maps, and refined with restraints of N—H = 0.86 (2) Å and O—H = 0.82 (2) Å; Uiso(H) values were set equal to k times those of their carrier atoms (k=1.2 for N and 1.5 for O atoms)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms as spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of the two-dimensional network parallel to the (010) plane, built from N—H···O and O—H···O hydrogen bonds which are shown as dashed lines. (a) the view along the a axis and (b) the view along the b axis. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
2,2'-(Iminodimethylene)dibenzimidazolium bis(perchlorate) methanol solvate top
Crystal data top
C16H17N52+·2ClO4·CH4OF(000) = 1056
Mr = 510.29Dx = 1.558 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7139 reflections
a = 8.3359 (4) Åθ = 2.3–25.2°
b = 18.0323 (8) ŵ = 0.36 mm1
c = 14.8532 (7) ÅT = 295 K
β = 102.944 (1)°Block, colorless
V = 2175.89 (18) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4957 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
0.3° wide ω exposures scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1010
Tmin = 0.900, Tmax = 0.932k = 2321
24553 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1086P)2]
where P = (Fo2 + 2Fc2)/3
4957 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.26 e Å3
5 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H17N52+·2ClO4·CH4OV = 2175.89 (18) Å3
Mr = 510.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3359 (4) ŵ = 0.36 mm1
b = 18.0323 (8) ÅT = 295 K
c = 14.8532 (7) Å0.30 × 0.20 × 0.20 mm
β = 102.944 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4957 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3479 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.932Rint = 0.069
24553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0575 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
4957 reflectionsΔρmin = 0.23 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2809 (3)0.30786 (14)0.38370 (17)0.0497 (6)
H1A0.18090.28880.39830.060*
H1B0.35860.31830.44140.060*
C20.3517 (3)0.25067 (13)0.33135 (15)0.0396 (5)
C30.4580 (3)0.14439 (14)0.29713 (16)0.0426 (5)
C40.5154 (3)0.07295 (14)0.29609 (19)0.0519 (6)
H40.51080.03940.34300.062*
C50.5799 (3)0.05391 (15)0.2218 (2)0.0582 (7)
H50.62250.00650.21900.070*
C60.5829 (4)0.10337 (16)0.1514 (2)0.0605 (7)
H60.62440.08750.10150.073*
C70.5271 (3)0.17525 (15)0.15176 (17)0.0520 (6)
H70.53150.20850.10450.062*
C80.4636 (3)0.19489 (13)0.22791 (15)0.0411 (5)
C90.2625 (4)0.44157 (14)0.38863 (18)0.0543 (7)
H9A0.33390.43070.44820.065*
H9B0.15600.45630.39870.065*
C100.3339 (3)0.50353 (14)0.34394 (15)0.0418 (5)
C110.4340 (3)0.61419 (13)0.32023 (16)0.0409 (5)
C120.4887 (3)0.68676 (14)0.32554 (17)0.0499 (6)
H120.48050.71750.37460.060*
C130.5561 (3)0.71112 (15)0.25419 (18)0.0541 (7)
H130.59600.75940.25550.065*
C140.5658 (3)0.66542 (15)0.18039 (18)0.0531 (6)
H140.60960.68450.13290.064*
C150.5131 (3)0.59301 (14)0.17489 (17)0.0489 (6)
H150.52130.56250.12560.059*
C160.4468 (3)0.56799 (13)0.24711 (15)0.0393 (5)
C170.2881 (5)0.3822 (2)0.0512 (2)0.0840 (11)
H17A0.17770.38900.05880.126*
H17B0.29650.33520.02230.126*
H17C0.31510.42120.01320.126*
Cl10.24642 (8)0.62635 (4)0.59521 (4)0.0481 (2)
Cl20.31148 (8)0.10820 (3)0.57634 (4)0.0464 (2)
N10.2440 (3)0.37571 (11)0.33106 (14)0.0445 (5)
H10.145 (4)0.3694 (14)0.2981 (19)0.053*
N20.3856 (3)0.18181 (11)0.36014 (13)0.0445 (5)
H2A0.358 (3)0.1635 (15)0.4057 (14)0.053*
N30.3963 (2)0.26023 (11)0.25234 (13)0.0418 (5)
H3A0.388 (3)0.3016 (10)0.2272 (16)0.050*
N40.3827 (2)0.49959 (11)0.26472 (13)0.0430 (5)
H4A0.380 (3)0.4598 (11)0.2328 (15)0.052*
N50.3622 (3)0.57129 (12)0.37846 (13)0.0445 (5)
H5A0.326 (3)0.5852 (15)0.4229 (14)0.053*
O10.3990 (2)0.38398 (9)0.13891 (12)0.0471 (4)
H1C0.493 (2)0.3935 (16)0.138 (2)0.071*
O20.3285 (3)0.62766 (13)0.68957 (15)0.0858 (7)
O30.0789 (3)0.63840 (17)0.58637 (17)0.1044 (9)
O40.3121 (3)0.67790 (18)0.5420 (2)0.1118 (10)
O50.2696 (4)0.55666 (15)0.55727 (18)0.1208 (11)
O60.1832 (3)0.06270 (12)0.59527 (17)0.0829 (7)
O70.4415 (3)0.11275 (12)0.65578 (14)0.0788 (7)
O80.3685 (3)0.07408 (13)0.50223 (13)0.0738 (6)
O90.2500 (3)0.17971 (12)0.54776 (17)0.0911 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0628 (17)0.0430 (14)0.0466 (13)0.0040 (12)0.0194 (12)0.0000 (11)
C20.0370 (12)0.0417 (13)0.0399 (11)0.0063 (10)0.0083 (9)0.0020 (10)
C30.0385 (13)0.0436 (14)0.0443 (12)0.0009 (10)0.0063 (10)0.0023 (10)
C40.0530 (16)0.0385 (14)0.0611 (15)0.0012 (12)0.0063 (12)0.0027 (12)
C50.0556 (17)0.0457 (16)0.0699 (18)0.0077 (13)0.0071 (14)0.0067 (13)
C60.0521 (17)0.0680 (19)0.0644 (17)0.0004 (14)0.0195 (14)0.0169 (15)
C70.0494 (15)0.0573 (17)0.0523 (14)0.0034 (12)0.0179 (12)0.0014 (12)
C80.0393 (13)0.0391 (13)0.0448 (12)0.0058 (10)0.0090 (10)0.0014 (10)
C90.0732 (18)0.0445 (15)0.0523 (14)0.0051 (13)0.0293 (13)0.0020 (11)
C100.0393 (13)0.0446 (14)0.0425 (11)0.0077 (10)0.0111 (9)0.0020 (10)
C110.0379 (13)0.0408 (13)0.0434 (12)0.0064 (10)0.0080 (10)0.0020 (10)
C120.0479 (15)0.0427 (14)0.0573 (15)0.0036 (11)0.0077 (12)0.0119 (11)
C130.0505 (16)0.0418 (15)0.0689 (17)0.0020 (12)0.0110 (13)0.0017 (12)
C140.0544 (16)0.0513 (16)0.0579 (15)0.0056 (12)0.0217 (12)0.0084 (12)
C150.0526 (16)0.0464 (15)0.0514 (14)0.0049 (12)0.0199 (12)0.0006 (11)
C160.0389 (12)0.0353 (13)0.0444 (12)0.0070 (9)0.0108 (10)0.0002 (9)
C170.073 (2)0.125 (3)0.0535 (17)0.0090 (19)0.0120 (16)0.0070 (17)
Cl10.0421 (4)0.0612 (4)0.0436 (3)0.0032 (3)0.0155 (3)0.0038 (3)
Cl20.0510 (4)0.0450 (4)0.0454 (3)0.0006 (3)0.0152 (3)0.0041 (2)
N10.0399 (12)0.0494 (13)0.0428 (11)0.0018 (9)0.0065 (9)0.0017 (9)
N20.0504 (12)0.0419 (12)0.0428 (10)0.0047 (9)0.0136 (9)0.0048 (9)
N30.0438 (11)0.0364 (11)0.0450 (11)0.0017 (9)0.0099 (9)0.0074 (8)
N40.0492 (12)0.0371 (11)0.0450 (10)0.0043 (9)0.0157 (9)0.0054 (8)
N50.0499 (12)0.0450 (12)0.0419 (11)0.0085 (9)0.0171 (9)0.0037 (9)
O10.0502 (11)0.0517 (11)0.0431 (9)0.0006 (8)0.0184 (8)0.0030 (7)
O20.0842 (17)0.118 (2)0.0479 (12)0.0101 (13)0.0010 (11)0.0106 (11)
O30.0471 (14)0.181 (3)0.0882 (17)0.0107 (15)0.0230 (12)0.0009 (16)
O40.0934 (19)0.131 (2)0.1124 (19)0.0257 (16)0.0253 (16)0.0449 (17)
O50.195 (3)0.090 (2)0.0883 (17)0.0224 (19)0.0562 (19)0.0256 (14)
O60.0794 (15)0.0663 (15)0.1205 (18)0.0110 (11)0.0595 (14)0.0011 (12)
O70.0794 (16)0.0883 (16)0.0576 (12)0.0054 (12)0.0081 (11)0.0067 (10)
O80.0842 (15)0.0842 (15)0.0617 (12)0.0034 (12)0.0350 (11)0.0092 (11)
O90.119 (2)0.0498 (13)0.0938 (17)0.0148 (13)0.0018 (14)0.0128 (11)
Geometric parameters (Å, º) top
N1—C11.448 (3)C11—C161.392 (3)
N1—C91.451 (3)C12—C131.378 (3)
N2—C21.323 (3)C12—H120.9300
N2—C31.396 (3)C13—C141.388 (4)
N3—C21.320 (3)C13—H130.9300
N3—C81.388 (3)C14—C151.374 (4)
N4—C101.330 (3)C14—H140.9300
N4—C161.392 (3)C15—C161.388 (3)
N5—C101.326 (3)C15—H150.9300
N5—C111.392 (3)C17—O11.419 (4)
C1—C21.491 (3)C17—H17A0.9600
C1—H1A0.9700C17—H17B0.9600
C1—H1B0.9700C17—H17C0.9600
C3—C41.375 (3)Cl1—O31.390 (2)
C3—C81.382 (3)Cl1—O41.408 (2)
C4—C51.375 (4)Cl1—O51.408 (2)
C4—H40.9300Cl1—O21.416 (2)
C5—C61.379 (4)Cl2—O71.414 (2)
C5—H50.9300Cl2—O91.417 (2)
C6—C71.377 (4)Cl2—O61.425 (2)
C6—H60.9300Cl2—O81.4320 (19)
C7—C81.398 (3)N1—H10.86 (3)
C7—H70.9300N2—H2A0.831 (16)
C9—C101.490 (3)N3—H3A0.831 (16)
C9—H9A0.9700N4—H4A0.857 (16)
C9—H9B0.9700N5—H5A0.824 (16)
C11—C121.382 (3)O1—H1C0.805 (17)
N1—C1—C2111.35 (19)C14—C13—H13119.2
N1—C1—H1A109.4C15—C14—C13122.4 (2)
C2—C1—H1A109.4C15—C14—H14118.8
N1—C1—H1B109.4C13—C14—H14118.8
C2—C1—H1B109.4C14—C15—C16116.1 (2)
H1A—C1—H1B108.0C14—C15—H15121.9
N3—C2—N2109.1 (2)C16—C15—H15121.9
N3—C2—C1126.7 (2)C15—C16—C11121.5 (2)
N2—C2—C1124.2 (2)C15—C16—N4132.0 (2)
C4—C3—C8122.6 (2)C11—C16—N4106.50 (19)
C4—C3—N2131.6 (2)O1—C17—H17A109.5
C8—C3—N2105.8 (2)O1—C17—H17B109.5
C5—C4—C3116.3 (2)H17A—C17—H17B109.5
C5—C4—H4121.9O1—C17—H17C109.5
C3—C4—H4121.9H17A—C17—H17C109.5
C4—C5—C6121.6 (3)H17B—C17—H17C109.5
C4—C5—H5119.2O3—Cl1—O4110.65 (18)
C6—C5—H5119.2O3—Cl1—O5109.08 (19)
C7—C6—C5122.8 (3)O4—Cl1—O5105.00 (19)
C7—C6—H6118.6O3—Cl1—O2110.09 (15)
C5—C6—H6118.6O4—Cl1—O2112.49 (16)
C6—C7—C8115.5 (2)O5—Cl1—O2109.37 (16)
C6—C7—H7122.2O7—Cl2—O9110.80 (14)
C8—C7—H7122.2O7—Cl2—O6109.72 (15)
C3—C8—N3106.4 (2)O9—Cl2—O6110.25 (16)
C3—C8—C7121.1 (2)O7—Cl2—O8110.00 (14)
N3—C8—C7132.5 (2)O9—Cl2—O8108.70 (14)
N1—C9—C10110.6 (2)O6—Cl2—O8107.30 (13)
N1—C9—H9A109.5C1—N1—C9113.1 (2)
C10—C9—H9A109.5C1—N1—H1104.8 (17)
N1—C9—H9B109.5C9—N1—H1113.8 (17)
C10—C9—H9B109.5C2—N2—C3109.28 (19)
H9A—C9—H9B108.1C2—N2—H2A123.9 (19)
N5—C10—N4109.1 (2)C3—N2—H2A126.5 (19)
N5—C10—C9125.0 (2)C2—N3—C8109.43 (19)
N4—C10—C9125.9 (2)C2—N3—H3A120.5 (18)
C12—C11—N5132.3 (2)C8—N3—H3A129.9 (18)
C12—C11—C16122.0 (2)C10—N4—C16109.0 (2)
N5—C11—C16105.7 (2)C10—N4—H4A123.9 (17)
C13—C12—C11116.4 (2)C16—N4—H4A127.0 (17)
C13—C12—H12121.8C10—N5—C11109.64 (19)
C11—C12—H12121.8C10—N5—H5A121.6 (19)
C12—C13—C14121.6 (2)C11—N5—H5A127.9 (19)
C12—C13—H13119.2C17—O1—H1C115 (2)
N1—C1—C2—N37.9 (4)C12—C11—C16—C151.0 (4)
N1—C1—C2—N2174.9 (2)N5—C11—C16—C15179.7 (2)
C8—C3—C4—C50.2 (4)C12—C11—C16—N4179.1 (2)
N2—C3—C4—C5179.7 (2)N5—C11—C16—N40.1 (2)
C3—C4—C5—C61.5 (4)C2—C1—N1—C9148.2 (2)
C4—C5—C6—C72.1 (4)C10—C9—N1—C1142.0 (2)
C5—C6—C7—C81.2 (4)N3—C2—N2—C30.7 (3)
C4—C3—C8—N3179.8 (2)C1—C2—N2—C3176.9 (2)
N2—C3—C8—N30.6 (2)C4—C3—N2—C2179.7 (3)
C4—C3—C8—C70.7 (4)C8—C3—N2—C20.8 (3)
N2—C3—C8—C7178.9 (2)N2—C2—N3—C80.3 (3)
C6—C7—C8—C30.2 (4)C1—C2—N3—C8177.2 (2)
C6—C7—C8—N3179.5 (3)C3—C8—N3—C20.2 (3)
N1—C9—C10—N5178.4 (2)C7—C8—N3—C2179.2 (2)
N1—C9—C10—N43.2 (4)N5—C10—N4—C160.3 (3)
N5—C11—C12—C13179.4 (2)C9—C10—N4—C16178.2 (2)
C16—C11—C12—C130.3 (4)C15—C16—N4—C10179.9 (2)
C11—C12—C13—C141.0 (4)C11—C16—N4—C100.1 (3)
C12—C13—C14—C151.6 (4)N4—C10—N5—C110.4 (3)
C13—C14—C15—C160.9 (4)C9—C10—N5—C11178.1 (2)
C14—C15—C16—C110.4 (4)C12—C11—N5—C10178.8 (3)
C14—C15—C16—N4179.8 (2)C16—C11—N5—C100.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.86 (3)2.42 (3)3.200 (3)150 (2)
N2—H2A···O80.83 (2)2.15 (2)2.895 (3)150 (3)
N2—H2A···O90.83 (2)2.49 (2)3.233 (3)150 (2)
N3—H3A···O10.83 (2)2.00 (2)2.799 (3)162 (2)
N4—H4A···O10.86 (2)1.99 (2)2.823 (3)166 (2)
N5—H5A···O40.82 (2)2.46 (2)3.197 (4)150 (2)
N5—H5A···O50.82 (2)2.21 (2)2.939 (3)147 (2)
O1—H1C···O6ii0.81 (2)2.00 (2)2.765 (3)159 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H17N52+·2ClO4·CH4O
Mr510.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.3359 (4), 18.0323 (8), 14.8532 (7)
β (°) 102.944 (1)
V3)2175.89 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.900, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
24553, 4957, 3479
Rint0.069
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.169, 1.02
No. of reflections4957
No. of parameters317
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.86 (3)2.42 (3)3.200 (3)150 (2)
N2—H2A···O80.831 (16)2.15 (2)2.895 (3)150 (3)
N2—H2A···O90.831 (16)2.489 (19)3.233 (3)150 (2)
N3—H3A···O10.831 (16)1.996 (17)2.799 (3)162 (2)
N4—H4A···O10.857 (16)1.985 (17)2.823 (3)166 (2)
N5—H5A···O40.824 (16)2.46 (2)3.197 (4)150 (2)
N5—H5A···O50.824 (16)2.21 (2)2.939 (3)147 (2)
O1—H1C···O6ii0.805 (17)2.00 (2)2.765 (3)159 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2.
Table 2 ππ Stacking interactions (°, Å) top
CgiCgjDihedral angleCCDInterplanar spacing
Cg1Cg2iv0.423.854 (2)3.349 (2)
Cg1Cg4iv0.353.557 (2)3.354 (2)
Cg3Cg2iv0.853.612 (2)3.360 (2)
Cg3Cg4v0.363.929 (2)3.453 (2)
CCD is the centroid-to-centroid distance; Cg1 is the centroid of atoms N2/N3/C2/C3/C8; Cg2 is the centroid of atoms N4/N5/C10/C11/C16; Cg3 is the centroid of atoms C3–C8; Cg4 is the centroid of atoms C11–C16. symmetry codes: (iv) 1/2 - x, -1/2 + y,1/2 - z; (v) 1/2 - x, -1/2 + y,1/2 - z.
 

Acknowledgements

This work received financial support mainly from the National Key Fundamental Project (No. 2002CCA00500).

References

First citationAdams, H., Bailey, N. A., Carane, J. D., Fenton, D.-E., Latour, J.-M. & Williams, J. M. (1990). J. Chem. Soc. Dalton Trans. pp. 1727–1735.  CSD CrossRef Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerends, H. P. & Stephan, D. W. (1984). Inorg. Chim. Acta, 93, 173–178.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGirasolo, M.-A., Pizzino, T., Mansueto, C., Valle, G. & Stocco, G.-C. (2000). Appl. Organomet. Chem. 14, 197–211.  Web of Science CrossRef CAS Google Scholar
First citationLiao, Z.-R., Zheng, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-L. & Zhao, W. (2001). Polyhedron, 20, 2813–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-H., Sun, Y., Yue, J.-J. & Liu, X.-L. (2004). J. Tianjin Normal Univ. (Nat. Sci. Ed.), 24, 1–2.  Google Scholar
First citationMeng, X.-G., Mei, F.-S. & Liao, Z.-R. (2005). Acta Cryst. E61, o3047–o3049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X.-G., Mei, F.-S. & Liao, Z.-R. (2006a). Acta Cryst. E62, o4120–o4122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X.-G., Mei, F.-S. & Liao, Z.-R. (2006b). Acta Cryst. E62, o3989–o3991.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarazon Navarro, A. & McKee, V. (2003). Acta Cryst. E59, o1199–o1201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, J.-Y., Tian, J.-L., Bian, H.-D., Yan, S.-P., Liao, D.-Z., Cheng, P. & Shen, P.-W. (2007). Appl. Organomet. Chem. 21, 129–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoung, M.-J., Wahnon, D., Hynes, R.-C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441–9447.  CSD CrossRef CAS Web of Science Google Scholar
First citationZheng, S.-R., Cai, Y.-P., Zhang, X.-L. & Su, C.-Y. (2005). Acta Cryst. C61, o642–o644.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o791-o792
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds