metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m859-m860

Di­bromido{2-[2-(piperidinium-1-yl)ethyl­imino­meth­yl]phenolato}zinc(II) monohydrate

aDepartment of Chemistry, Huainan Normal College, Huainan 232001, People's Republic of China
*Correspondence e-mail: huainanweiyijun@163.com

(Received 22 May 2008; accepted 26 May 2008; online 7 June 2008)

The asymmetric unit of the title compound, [ZnBr2(C14H20N2O)]·H2O, consists of a mononuclear Schiff base zinc(II) complex mol­ecule and a solvent water mol­ecule. The ZnII atom is four-coordinated in an approximately tetra­hedral geometry, binding to the imine N and phenolate O atoms of the neutral zwitterionic Schiff base ligand and to two terminal Br anions. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯Br and O—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For the background to Schiff base zinc(II) complexes, see: Bhosekar et al. (2006[Bhosekar, G., Jess, I. & Näther, C. (2006). Acta Cryst. E62, m2073-m2074.]); Chisholm et al. (2001[Chisholm, M. H., Gallucci, J. C. & Zhen, H. (2001). Inorg. Chem. 40, 5051-5054.]); Jian et al. (2004[Jian, F., Li, C., Sun, P. & Xiao, H. (2004). Acta Cryst. E60, m1811-m1812.]); Lacroix et al. (1996[Lacroix, P. G., Di Bella, S. & Ledoux, I. (1996). Chem. Mater. 8, 541-545.]); Tatar et al. (2002[Tatar, L., Atakol, O. & Ülkü, D. (2002). Acta Cryst. E58, m83-m85.]). For related structures, see: Ma, Gu et al. (2006[Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437-m1438.]); Ma, Lv et al. (2006[Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322-m1323.]); Peng & Hou (2006[Peng, S.-J. & Hou, H.-Y. (2006). Acta Cryst. E62, m2947-m2949.]); Peng et al. (2006[Peng, S.-J., Zhou, C.-S. & Yang, T. (2006). Acta Cryst. E62, m1413-m1415.]); Wei et al. (2007[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654-m655.]); Zhang et al. (2008[Zhang, D.-F., Zhou, M.-H. & Yuan, C.-J. (2008). Acta Cryst. E64, m825-m826.]); Zhu et al. (2007[Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431-m1432.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C14H20N2O)]·H2O

  • Mr = 475.53

  • Triclinic, [P \overline 1]

  • a = 9.2997 (18) Å

  • b = 10.1776 (17) Å

  • c = 11.1667 (18) Å

  • α = 71.510 (2)°

  • β = 71.215 (2)°

  • γ = 67.571 (2)°

  • V = 901.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.80 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.390, Tmax = 0.422 (expected range = 0.326–0.352)

  • 5468 measured reflections

  • 3983 independent reflections

  • 2891 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.091

  • S = 1.02

  • 3983 reflections

  • 199 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.936 (2)
Zn1—N1 2.024 (3)
Zn1—Br1 2.3417 (7)
Zn1—Br2 2.3991 (7)
O1—Zn1—N1 93.91 (11)
O1—Zn1—Br1 116.12 (8)
N1—Zn1—Br1 113.04 (8)
O1—Zn1—Br2 109.78 (8)
N1—Zn1—Br2 108.84 (9)
Br1—Zn1—Br2 113.42 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.90 (4) 1.89 (4) 2.777 (4) 169 (4)
O2—H2A⋯Br2i 0.85 (4) 2.57 (4) 3.399 (3) 165 (4)
O2—H2B⋯O1ii 0.86 (3) 1.93 (4) 2.762 (4) 165 (5)
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc(II) complexes derived from Schiff base ligands have been studied extensively due to their interesting structures and wide applications (Lacroix et al., 1996; Chisholm et al., 2001; Jian et al., 2004; Tatar et al., 2002; Bhosekar et al., 2006). Recently, we have reported two Schiff base zinc(II) complexes with bromide ligands (Wei et al., 2007; Zhu et al., 2007). As a continuation of our work on the structures of such complexes, we report herein the crystal structure of the new title complex, (I), which is isostructural with the zinc(II) complex with chloride ligands (Zhang et al., 2008).

The tetrahedral coordination sphere of ZnII atom in (I) is formed by the imine N and phenolate O atoms of the Schiff base ligand and by two terminal Br- anions (Fig. 1). The coordinate bond distances (Table 1) are typical and comparable with the values in other similar zinc(II) complexes (Peng & Hou, 2006; Peng et al., 2006; Ma, Gu et al., 2006; Ma, Lv et al., 2006). The O1—Zn1—N1 and O1—Zn1—Br1 bond angles deviate most from ideal tetrahedral geometry with values of 93.91 (11) and 116.12 (8)°, respectively. The other angles in the coordination sphere are in the range 108.84 (9)–113.42 (2)° (Table 1).

In the crystal structure of (I), molecules are linked through intermolecular O—H···Br and O—H···O hydrogen bonds (Table 2), forming chains running along the b axis (Fig. 2).

Related literature top

For the background of Schiff base zinc(II) complexes, see: Bhosekar et al. (2006); Chisholm et al. (2001); Jian et al. (2004); Lacroix et al. (1996); Tatar et al. (2002). For related structures, see: Ma, Gu et al. (2006); Ma, Lv et al. (2006); Peng & Hou (2006); Peng et al. (2006); Wei et al. (2007); Zhang et al. (2008); Zhu et al. (2007).

Experimental top

Compound (I) was obtained by stirring of salicylaldehyde (0.1 mmol, 12.2 mg), 2-piperidin-1-ylethylamine (0.1 mmol, 12.8 mg), and zinc(II) bromide (0.1 mmol, 22.5 mg) in methanol (20 ml) for 30 min at room temperature. The reaction mixture was fitered. Yellow block-shaped single crystals suitable for X-ray diffraction formed from the filtrate after one day.

Refinement top

Atoms H2, H2A and H2B were located in a difference Fourier map and refined isotropically, with the N—H, O—H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. Other H atom positions were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) values set at 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of (I), viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
Dibromido{2-[2-(piperidinium-1-yl)ethyliminomethyl]phenolato}zinc(II) monohydrate top
Crystal data top
[ZnBr2(C14H20N2O)]·H2OZ = 2
Mr = 475.53F(000) = 472
Triclinic, P1Dx = 1.751 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2997 (18) ÅCell parameters from 1797 reflections
b = 10.1776 (17) Åθ = 2.2–25.4°
c = 11.1667 (18) ŵ = 5.80 mm1
α = 71.510 (2)°T = 298 K
β = 71.215 (2)°Block, yellow
γ = 67.571 (2)°0.20 × 0.20 × 0.18 mm
V = 901.8 (3) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3983 independent reflections
Radiation source: fine-focus sealed tube2891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 129
Tmin = 0.390, Tmax = 0.422k = 1312
5468 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3508P]
where P = (Fo2 + 2Fc2)/3
3983 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.72 e Å3
4 restraintsΔρmin = 0.55 e Å3
Crystal data top
[ZnBr2(C14H20N2O)]·H2Oγ = 67.571 (2)°
Mr = 475.53V = 901.8 (3) Å3
Triclinic, P1Z = 2
a = 9.2997 (18) ÅMo Kα radiation
b = 10.1776 (17) ŵ = 5.80 mm1
c = 11.1667 (18) ÅT = 298 K
α = 71.510 (2)°0.20 × 0.20 × 0.18 mm
β = 71.215 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3983 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2891 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.422Rint = 0.016
5468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.72 e Å3
3983 reflectionsΔρmin = 0.55 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.82333 (5)0.20793 (4)0.11443 (4)0.03909 (13)
Br10.93736 (6)0.24561 (5)0.28619 (4)0.06059 (15)
Br20.56849 (5)0.24885 (5)0.18395 (4)0.05682 (14)
O10.9582 (3)0.3089 (3)0.0226 (2)0.0451 (6)
O20.7190 (3)0.4568 (3)0.0481 (3)0.0515 (7)
N10.8013 (4)0.0074 (3)0.0039 (3)0.0406 (7)
N20.5644 (4)0.2574 (3)0.2120 (3)0.0420 (7)
C10.8738 (4)0.1069 (4)0.1951 (3)0.0378 (8)
C20.9415 (4)0.2555 (4)0.1434 (3)0.0379 (8)
C30.9993 (5)0.3518 (4)0.2277 (4)0.0451 (9)
H31.04510.45080.19600.054*
C40.9897 (5)0.3031 (5)0.3550 (4)0.0555 (11)
H41.02830.36960.40770.067*
C50.9234 (6)0.1561 (5)0.4069 (4)0.0594 (12)
H50.91760.12360.49350.071*
C60.8668 (5)0.0600 (5)0.3273 (4)0.0513 (10)
H60.82250.03870.36110.062*
C70.8178 (4)0.0091 (4)0.1258 (4)0.0409 (8)
H70.79150.10430.17450.049*
C80.7581 (5)0.1241 (4)0.0443 (4)0.0552 (11)
H8A0.75600.20800.02790.066*
H8B0.83740.11400.08840.066*
C90.5982 (5)0.1467 (5)0.1357 (5)0.0633 (12)
H9A0.59280.05470.19520.076*
H9B0.51660.17900.08700.076*
C100.3889 (5)0.3298 (5)0.2454 (5)0.0594 (11)
H10A0.33590.25730.29620.071*
H10B0.35020.37610.16640.071*
C110.3486 (6)0.4435 (6)0.3223 (6)0.0836 (17)
H11A0.39150.52160.26770.100*
H11B0.23340.48480.34760.100*
C120.4153 (7)0.3795 (7)0.4409 (6)0.094 (2)
H12A0.39250.45560.48530.113*
H12B0.36510.30770.49970.113*
C130.5908 (6)0.3095 (7)0.4042 (5)0.0835 (17)
H13A0.63250.26530.48190.100*
H13B0.64140.38300.35100.100*
C140.6302 (6)0.1951 (5)0.3306 (5)0.0701 (13)
H14A0.74530.15280.30590.084*
H14B0.58620.11790.38620.084*
H2B0.8210 (13)0.423 (5)0.029 (5)0.080*
H2A0.699 (4)0.524 (4)0.086 (4)0.080*
H20.611 (5)0.327 (4)0.168 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0453 (3)0.0381 (2)0.0358 (2)0.01543 (19)0.00516 (18)0.01193 (18)
Br10.0684 (3)0.0803 (3)0.0459 (2)0.0337 (3)0.0178 (2)0.0131 (2)
Br20.0462 (3)0.0559 (3)0.0720 (3)0.0217 (2)0.0069 (2)0.0184 (2)
O10.0509 (16)0.0409 (14)0.0377 (14)0.0066 (12)0.0070 (12)0.0138 (11)
O20.0503 (17)0.0479 (16)0.0572 (18)0.0181 (14)0.0049 (14)0.0170 (13)
N10.0497 (19)0.0346 (16)0.0412 (17)0.0198 (14)0.0023 (14)0.0134 (13)
N20.0438 (19)0.0411 (18)0.0415 (17)0.0163 (15)0.0001 (14)0.0157 (14)
C10.041 (2)0.041 (2)0.0329 (18)0.0188 (17)0.0024 (15)0.0099 (15)
C20.033 (2)0.044 (2)0.0387 (19)0.0167 (16)0.0012 (15)0.0128 (16)
C30.046 (2)0.044 (2)0.049 (2)0.0169 (18)0.0028 (18)0.0200 (18)
C40.059 (3)0.071 (3)0.049 (2)0.030 (2)0.001 (2)0.031 (2)
C50.071 (3)0.081 (3)0.034 (2)0.040 (3)0.002 (2)0.013 (2)
C60.057 (3)0.054 (2)0.042 (2)0.023 (2)0.0084 (19)0.0033 (18)
C70.039 (2)0.0348 (19)0.047 (2)0.0154 (16)0.0043 (17)0.0070 (16)
C80.064 (3)0.043 (2)0.059 (3)0.022 (2)0.001 (2)0.0222 (19)
C90.061 (3)0.063 (3)0.076 (3)0.026 (2)0.001 (2)0.037 (2)
C100.046 (3)0.062 (3)0.074 (3)0.018 (2)0.011 (2)0.022 (2)
C110.040 (3)0.071 (3)0.140 (5)0.011 (2)0.002 (3)0.056 (4)
C120.083 (4)0.141 (5)0.084 (4)0.056 (4)0.023 (3)0.073 (4)
C130.077 (4)0.140 (5)0.050 (3)0.045 (4)0.013 (3)0.030 (3)
C140.055 (3)0.074 (3)0.065 (3)0.011 (3)0.019 (2)0.002 (3)
Geometric parameters (Å, º) top
Zn1—O11.936 (2)C5—H50.9300
Zn1—N12.024 (3)C6—H60.9300
Zn1—Br12.3417 (7)C7—H70.9300
Zn1—Br22.3991 (7)C8—C91.488 (6)
O1—C21.321 (4)C8—H8A0.9700
O2—H2B0.86 (3)C8—H8B0.9700
O2—H2A0.85 (4)C9—H9A0.9700
N1—C71.282 (5)C9—H9B0.9700
N1—C81.467 (4)C10—C111.519 (6)
N2—C101.487 (5)C10—H10A0.9700
N2—C141.491 (5)C10—H10B0.9700
N2—C91.503 (5)C11—C121.496 (8)
N2—H20.90 (4)C11—H11A0.9700
C1—C21.404 (5)C11—H11B0.9700
C1—C61.415 (5)C12—C131.485 (7)
C1—C71.454 (5)C12—H12A0.9700
C2—C31.411 (5)C12—H12B0.9700
C3—C41.370 (6)C13—C141.502 (7)
C3—H30.9300C13—H13A0.9700
C4—C51.389 (6)C13—H13B0.9700
C4—H40.9300C14—H14A0.9700
C5—C61.371 (6)C14—H14B0.9700
O1—Zn1—N193.91 (11)C9—C8—H8A109.7
O1—Zn1—Br1116.12 (8)N1—C8—H8B109.7
N1—Zn1—Br1113.04 (8)C9—C8—H8B109.7
O1—Zn1—Br2109.78 (8)H8A—C8—H8B108.2
N1—Zn1—Br2108.84 (9)C8—C9—N2112.2 (3)
Br1—Zn1—Br2113.42 (2)C8—C9—H9A109.2
C2—O1—Zn1121.6 (2)N2—C9—H9A109.2
H2B—O2—H2A105 (2)C8—C9—H9B109.2
C7—N1—C8117.3 (3)N2—C9—H9B109.2
C7—N1—Zn1119.8 (2)H9A—C9—H9B107.9
C8—N1—Zn1122.8 (2)N2—C10—C11110.8 (3)
C10—N2—C14111.0 (3)N2—C10—H10A109.5
C10—N2—C9108.7 (3)C11—C10—H10A109.5
C14—N2—C9113.6 (3)N2—C10—H10B109.5
C10—N2—H2108 (3)C11—C10—H10B109.5
C14—N2—H2102 (3)H10A—C10—H10B108.1
C9—N2—H2113 (3)C12—C11—C10111.6 (4)
C2—C1—C6119.5 (3)C12—C11—H11A109.3
C2—C1—C7125.2 (3)C10—C11—H11A109.3
C6—C1—C7115.1 (3)C12—C11—H11B109.3
O1—C2—C1123.9 (3)C10—C11—H11B109.3
O1—C2—C3118.6 (3)H11A—C11—H11B108.0
C1—C2—C3117.4 (3)C13—C12—C11110.0 (4)
C4—C3—C2121.6 (4)C13—C12—H12A109.7
C4—C3—H3119.2C11—C12—H12A109.7
C2—C3—H3119.2C13—C12—H12B109.7
C3—C4—C5121.2 (4)C11—C12—H12B109.7
C3—C4—H4119.4H12A—C12—H12B108.2
C5—C4—H4119.4C12—C13—C14110.9 (4)
C6—C5—C4118.4 (4)C12—C13—H13A109.5
C6—C5—H5120.8C14—C13—H13A109.5
C4—C5—H5120.8C12—C13—H13B109.5
C5—C6—C1121.8 (4)C14—C13—H13B109.5
C5—C6—H6119.1H13A—C13—H13B108.0
C1—C6—H6119.1N2—C14—C13111.4 (4)
N1—C7—C1126.2 (3)N2—C14—H14A109.4
N1—C7—H7116.9C13—C14—H14A109.4
C1—C7—H7116.9N2—C14—H14B109.4
N1—C8—C9109.9 (3)C13—C14—H14B109.4
N1—C8—H8A109.7H14A—C14—H14B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.90 (4)1.89 (4)2.777 (4)169 (4)
O2—H2A···Br2i0.85 (4)2.57 (4)3.399 (3)165 (4)
O2—H2B···O1ii0.86 (3)1.93 (4)2.762 (4)165 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[ZnBr2(C14H20N2O)]·H2O
Mr475.53
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.2997 (18), 10.1776 (17), 11.1667 (18)
α, β, γ (°)71.510 (2), 71.215 (2), 67.571 (2)
V3)901.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.80
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.390, 0.422
No. of measured, independent and
observed [I > 2σ(I)] reflections
5468, 3983, 2891
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.03
No. of reflections3983
No. of parameters199
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.55

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.936 (2)Zn1—Br12.3417 (7)
Zn1—N12.024 (3)Zn1—Br22.3991 (7)
O1—Zn1—N193.91 (11)O1—Zn1—Br2109.78 (8)
O1—Zn1—Br1116.12 (8)N1—Zn1—Br2108.84 (9)
N1—Zn1—Br1113.04 (8)Br1—Zn1—Br2113.42 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.90 (4)1.89 (4)2.777 (4)169 (4)
O2—H2A···Br2i0.85 (4)2.57 (4)3.399 (3)165 (4)
O2—H2B···O1ii0.86 (3)1.93 (4)2.762 (4)165 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z.
 

Acknowledgements

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. KJ2007A126ZC.

References

First citationBhosekar, G., Jess, I. & Näther, C. (2006). Acta Cryst. E62, m2073–m2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChisholm, M. H., Gallucci, J. C. & Zhen, H. (2001). Inorg. Chem. 40, 5051–5054.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJian, F., Li, C., Sun, P. & Xiao, H. (2004). Acta Cryst. E60, m1811–m1812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLacroix, P. G., Di Bella, S. & Ledoux, I. (1996). Chem. Mater. 8, 541–545.  CrossRef CAS Web of Science Google Scholar
First citationMa, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437–m1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322–m1323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. & Hou, H.-Y. (2006). Acta Cryst. E62, m2947–m2949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J., Zhou, C.-S. & Yang, T. (2006). Acta Cryst. E62, m1413–m1415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTatar, L., Atakol, O. & Ülkü, D. (2002). Acta Cryst. E58, m83–m85.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D.-F., Zhou, M.-H. & Yuan, C.-J. (2008). Acta Cryst. E64, m825–m826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m859-m860
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds