organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-cyano­pyridinium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 30 June 2008; accepted 4 July 2008; online 12 July 2008)

In the crystal structure of the title compound, C6H6N3+·Cl, cohesion is maintained by cation–anion N—H⋯Cl and cation–cation N—H⋯N hydrogen bonds, which link the ions into a three-dimensional network.

Related literature

For the use of tetra­zole derivatives in coordination chemisty, see: Manzur et al. (2007[Manzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500-5510.]); Ismayilov et al. (2007[Ismayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898-2907.]); Austria et al. (2007[Austria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283-6290.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N3+·Cl

  • Mr = 155.59

  • Monoclinic, P 21 /c

  • a = 4.0937 (8) Å

  • b = 11.856 (2) Å

  • c = 14.842 (3) Å

  • β = 94.95 (3)°

  • V = 717.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 298 (2) K

  • 0.18 × 0.15 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.922, Tmax = 0.935

  • 7307 measured reflections

  • 1652 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.102

  • S = 1.06

  • 1652 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.86 2.29 3.0818 (18) 153
N3—H3A⋯Cl1 0.86 2.65 3.363 (2) 141
N3—H3A⋯N1i 0.86 2.53 3.046 (3) 120
N3—H3B⋯Cl1ii 0.86 2.37 3.216 (2) 167
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

In the past five years, we have focused on the chemistry of amine derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Manzur et al. 2007; Ismayilov et al. 2007; Austria et al. 2007). Herein the crystal structure of the title compound, 6-aminonicotinonitrile-1-ium chloride, is reported.

In the title compound (Fig.1), the N2 atom of the pyridine ring is protonated. The nitrile group and the pyridine ring are nearly coplanar, as indicated by the dihedral angle of 86.71 (14)° formed by the CN vector with the normal to the pyridine plane. Crystal cohesion is enforced by cation-anion N—H···Cl and cation-cation N—H···N hydrogen bonds (Table 1, Fig. 2) linking molecules into a three-dimensional network.

Related literature top

For the use of tetrazole derivatives in coordination chemisty, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007).

Experimental top

6-Aminonicotinonitrile-1-ium chloride (3 mmol) was dissolved in ethanol (20 ml) and evaporated in the air affording colourless block-shaped crystals suitable for X-ray analysis.

Refinement top

All H atoms were fixed geometrically and treated as riding, with C–H = 0.93 Å, N–H =0.86 Å, and with Uiso(H) =1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound viewed along the a axis showing H bonding pattern as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
2-Amino-5-cyanopyridinium chloride top
Crystal data top
C6H6N3+·ClF(000) = 320
Mr = 155.59Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1250 reflections
a = 4.0937 (8) Åθ = 2.3–24.4°
b = 11.856 (2) ŵ = 0.45 mm1
c = 14.842 (3) ÅT = 298 K
β = 94.95 (3)°Block, colourless
V = 717.7 (2) Å30.18 × 0.15 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1652 independent reflections
Radiation source: fine-focus sealed tube1252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.922, Tmax = 0.935l = 1919
7307 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.041P)2 + 0.2213P]
where P = (Fo2 + 2Fc2)/3
1652 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H6N3+·ClV = 717.7 (2) Å3
Mr = 155.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.0937 (8) ŵ = 0.45 mm1
b = 11.856 (2) ÅT = 298 K
c = 14.842 (3) Å0.18 × 0.15 × 0.15 mm
β = 94.95 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1652 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1252 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.935Rint = 0.044
7307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
1652 reflectionsΔρmin = 0.23 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44244 (14)0.60704 (5)0.17252 (4)0.0459 (2)
N20.0652 (4)0.69979 (14)0.32749 (11)0.0377 (4)
H2A0.10410.66500.27870.045*
C20.0884 (5)0.64335 (18)0.39019 (14)0.0385 (5)
H2B0.15060.56870.38010.046*
N30.3183 (5)0.85595 (16)0.27271 (13)0.0507 (5)
H3A0.35670.81750.22560.061*
H3B0.38160.92500.27770.061*
C30.1527 (5)0.69550 (17)0.46837 (13)0.0352 (5)
C10.3034 (6)0.63422 (18)0.53757 (15)0.0442 (5)
C60.1619 (5)0.80885 (17)0.33739 (13)0.0355 (5)
C40.0595 (5)0.81008 (17)0.48174 (14)0.0398 (5)
H4A0.10290.84710.53460.048*
N10.4184 (6)0.58515 (18)0.59282 (14)0.0626 (6)
C50.0921 (5)0.86506 (17)0.41756 (15)0.0414 (5)
H5A0.15100.94030.42610.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0522 (3)0.0472 (3)0.0398 (3)0.0063 (3)0.0124 (2)0.0055 (2)
N20.0471 (10)0.0364 (9)0.0305 (9)0.0004 (8)0.0091 (7)0.0073 (7)
C20.0442 (12)0.0344 (11)0.0376 (11)0.0020 (9)0.0082 (9)0.0007 (9)
N30.0672 (13)0.0442 (11)0.0435 (11)0.0080 (10)0.0207 (10)0.0001 (9)
C30.0370 (11)0.0378 (11)0.0313 (10)0.0033 (9)0.0063 (8)0.0016 (8)
C10.0523 (13)0.0414 (12)0.0400 (12)0.0027 (10)0.0101 (10)0.0022 (10)
C60.0370 (11)0.0366 (11)0.0332 (10)0.0022 (9)0.0054 (9)0.0028 (8)
C40.0486 (12)0.0384 (11)0.0334 (11)0.0036 (10)0.0104 (9)0.0066 (9)
N10.0862 (16)0.0547 (13)0.0514 (12)0.0085 (11)0.0316 (12)0.0009 (10)
C50.0530 (13)0.0306 (11)0.0419 (12)0.0015 (9)0.0106 (10)0.0060 (9)
Geometric parameters (Å, º) top
N2—C21.345 (2)C3—C41.420 (3)
N2—C61.356 (3)C3—C11.440 (3)
N2—H2A0.8600C1—N11.140 (3)
C2—C31.360 (3)C6—C51.414 (3)
C2—H2B0.9300C4—C51.349 (3)
N3—C61.323 (3)C4—H4A0.9300
N3—H3A0.8600C5—H5A0.9300
N3—H3B0.8600
C2—N2—C6123.26 (17)C4—C3—C1120.62 (18)
C2—N2—H2A118.4N1—C1—C3179.0 (3)
C6—N2—H2A118.4N3—C6—N2118.60 (18)
N2—C2—C3120.02 (19)N3—C6—C5123.9 (2)
N2—C2—H2B120.0N2—C6—C5117.53 (18)
C3—C2—H2B120.0C5—C4—C3119.85 (18)
C6—N3—H3A120.0C5—C4—H4A120.1
C6—N3—H3B120.0C3—C4—H4A120.1
H3A—N3—H3B120.0C4—C5—C6120.34 (19)
C2—C3—C4118.98 (18)C4—C5—H5A119.8
C2—C3—C1120.37 (19)C6—C5—H5A119.8
C6—N2—C2—C30.3 (3)C2—C3—C4—C50.4 (3)
N2—C2—C3—C40.9 (3)C1—C3—C4—C5177.6 (2)
N2—C2—C3—C1177.1 (2)C3—C4—C5—C60.7 (3)
C2—N2—C6—N3178.4 (2)N3—C6—C5—C4177.9 (2)
C2—N2—C6—C50.8 (3)N2—C6—C5—C41.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.862.293.0818 (18)153
N3—H3A···Cl10.862.653.363 (2)141
N3—H3A···N1i0.862.533.046 (3)120
N3—H3B···Cl1ii0.862.373.216 (2)167
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N3+·Cl
Mr155.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.0937 (8), 11.856 (2), 14.842 (3)
β (°) 94.95 (3)
V3)717.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.18 × 0.15 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.922, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
7307, 1652, 1252
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.102, 1.06
No. of reflections1652
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.862.293.0818 (18)152.8
N3—H3A···Cl10.862.653.363 (2)141.2
N3—H3A···N1i0.862.533.046 (3)119.8
N3—H3B···Cl1ii0.862.373.216 (2)166.9
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationAustria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283–6290.  Web of Science CSD CrossRef PubMed CAS
First citationIsmayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898–2907.  Web of Science CSD CrossRef PubMed
First citationManzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500–5510.  Web of Science CSD CrossRef
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds