supplementary materials


rz2232 scheme

Acta Cryst. (2008). E64, o1461    [ doi:10.1107/S1600536808020783 ]

2-Amino-5-cyanopyridinium chloride

X.-C. Wen

Abstract top

In the crystal structure of the title compound, C6H6N3+·Cl-, cohesion is maintained by cation-anion N-H...Cl and cation-cation N-H...N hydrogen bonds, which link the ions into a three-dimensional network.

Comment top

In the past five years, we have focused on the chemistry of amine derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Manzur et al. 2007; Ismayilov et al. 2007; Austria et al. 2007). Herein the crystal structure of the title compound, 6-aminonicotinonitrile-1-ium chloride, is reported.

In the title compound (Fig.1), the N2 atom of the pyridine ring is protonated. The nitrile group and the pyridine ring are nearly coplanar, as indicated by the dihedral angle of 86.71 (14)° formed by the CN vector with the normal to the pyridine plane. Crystal cohesion is enforced by cation-anion N—H···Cl and cation-cation N—H···N hydrogen bonds (Table 1, Fig. 2) linking molecules into a three-dimensional network.

Related literature top

For the use of tetrazole derivatives in coordination chemisty, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007).

Experimental top

6-Aminonicotinonitrile-1-ium chloride (3 mmol) was dissolved in ethanol (20 ml) and evaporated in the air affording colourless block-shaped crystals suitable for X-ray analysis.

Refinement top

All H atoms were fixed geometrically and treated as riding, with C–H = 0.93 Å, N–H =0.86 Å, and with Uiso(H) =1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound viewed along the a axis showing H bonding pattern as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
2-Amino-5-cyanopyridinium chloride top
Crystal data top
C6H6N3+·ClF000 = 320
Mr = 155.59Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1250 reflections
a = 4.0937 (8) Åθ = 2.3–24.4º
b = 11.856 (2) ŵ = 0.45 mm1
c = 14.842 (3) ÅT = 298 (2) K
β = 94.95 (3)ºBlock, colourless
V = 717.7 (2) Å30.18 × 0.15 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1652 independent reflections
Radiation source: fine-focus sealed tube1252 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 298(2) Kθmin = 3.3º
ω scansh = 5→5
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 15→15
Tmin = 0.922, Tmax = 0.935l = 19→19
7307 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.102  w = 1/[σ2(Fo2) + (0.041P)2 + 0.2213P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1652 reflectionsΔρmax = 0.21 e Å3
91 parametersΔρmin = 0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
C6H6N3+·ClV = 717.7 (2) Å3
Mr = 155.59Z = 4
Monoclinic, P21/cMo Kα
a = 4.0937 (8) ŵ = 0.45 mm1
b = 11.856 (2) ÅT = 298 (2) K
c = 14.842 (3) Å0.18 × 0.15 × 0.15 mm
β = 94.95 (3)º
Data collection top
Rigaku Mercury2
diffractometer
1652 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1252 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.935Rint = 0.044
7307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04591 parameters
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
1652 reflectionsΔρmin = 0.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44244 (14)0.60704 (5)0.17252 (4)0.0459 (2)
N20.0652 (4)0.69979 (14)0.32749 (11)0.0377 (4)
H2A0.10410.66500.27870.045*
C20.0884 (5)0.64335 (18)0.39019 (14)0.0385 (5)
H2B0.15060.56870.38010.046*
N30.3183 (5)0.85595 (16)0.27271 (13)0.0507 (5)
H3A0.35670.81750.22560.061*
H3B0.38160.92500.27770.061*
C30.1527 (5)0.69550 (17)0.46837 (13)0.0352 (5)
C10.3034 (6)0.63422 (18)0.53757 (15)0.0442 (5)
C60.1619 (5)0.80885 (17)0.33739 (13)0.0355 (5)
C40.0595 (5)0.81008 (17)0.48174 (14)0.0398 (5)
H4A0.10290.84710.53460.048*
N10.4184 (6)0.58515 (18)0.59282 (14)0.0626 (6)
C50.0921 (5)0.86506 (17)0.41756 (15)0.0414 (5)
H5A0.15100.94030.42610.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0522 (3)0.0472 (3)0.0398 (3)0.0063 (3)0.0124 (2)0.0055 (2)
N20.0471 (10)0.0364 (9)0.0305 (9)0.0004 (8)0.0091 (7)0.0073 (7)
C20.0442 (12)0.0344 (11)0.0376 (11)0.0020 (9)0.0082 (9)0.0007 (9)
N30.0672 (13)0.0442 (11)0.0435 (11)0.0080 (10)0.0207 (10)0.0001 (9)
C30.0370 (11)0.0378 (11)0.0313 (10)0.0033 (9)0.0063 (8)0.0016 (8)
C10.0523 (13)0.0414 (12)0.0400 (12)0.0027 (10)0.0101 (10)0.0022 (10)
C60.0370 (11)0.0366 (11)0.0332 (10)0.0022 (9)0.0054 (9)0.0028 (8)
C40.0486 (12)0.0384 (11)0.0334 (11)0.0036 (10)0.0104 (9)0.0066 (9)
N10.0862 (16)0.0547 (13)0.0514 (12)0.0085 (11)0.0316 (12)0.0009 (10)
C50.0530 (13)0.0306 (11)0.0419 (12)0.0015 (9)0.0106 (10)0.0060 (9)
Geometric parameters (Å, °) top
N2—C21.345 (2)C3—C41.420 (3)
N2—C61.356 (3)C3—C11.440 (3)
N2—H2A0.8600C1—N11.140 (3)
C2—C31.360 (3)C6—C51.414 (3)
C2—H2B0.9300C4—C51.349 (3)
N3—C61.323 (3)C4—H4A0.9300
N3—H3A0.8600C5—H5A0.9300
N3—H3B0.8600
C2—N2—C6123.26 (17)C4—C3—C1120.62 (18)
C2—N2—H2A118.4N1—C1—C3179.0 (3)
C6—N2—H2A118.4N3—C6—N2118.60 (18)
N2—C2—C3120.02 (19)N3—C6—C5123.9 (2)
N2—C2—H2B120.0N2—C6—C5117.53 (18)
C3—C2—H2B120.0C5—C4—C3119.85 (18)
C6—N3—H3A120.0C5—C4—H4A120.1
C6—N3—H3B120.0C3—C4—H4A120.1
H3A—N3—H3B120.0C4—C5—C6120.34 (19)
C2—C3—C4118.98 (18)C4—C5—H5A119.8
C2—C3—C1120.37 (19)C6—C5—H5A119.8
C6—N2—C2—C30.3 (3)C2—C3—C4—C50.4 (3)
N2—C2—C3—C40.9 (3)C1—C3—C4—C5177.6 (2)
N2—C2—C3—C1177.1 (2)C3—C4—C5—C60.7 (3)
C2—N2—C6—N3178.4 (2)N3—C6—C5—C4177.9 (2)
C2—N2—C6—C50.8 (3)N2—C6—C5—C41.2 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.862.293.0818 (18)153
N3—H3A···Cl10.862.653.363 (2)141
N3—H3A···N1i0.862.533.046 (3)120
N3—H3B···Cl1ii0.862.373.216 (2)167
Symmetry codes: (i) x+1, −y+3/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.862.293.0818 (18)153
N3—H3A···Cl10.862.653.363 (2)141
N3—H3A···N1i0.862.533.046 (3)120
N3—H3B···Cl1ii0.862.373.216 (2)167
Symmetry codes: (i) x+1, −y+3/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2.
Acknowledgements top

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

references
References top

Austria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283–6290.

Ismayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898–2907.

Manzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500–5510.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.