organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[(Di­methyl­amino)methyl­ene­amino]-1,3-di­methyl­pyrimidine-2,4(1H,3H)-dione dihydrate

aDepartment of Chemical Sciences, Tezpur University, Tezpur 784 028, India, and bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 607, India
*Correspondence e-mail: ashim@tezu.ernet.in

(Received 8 May 2008; accepted 29 July 2008; online 6 August 2008)

Uracil, the pyrimidine nucleobase, which combined with adenine forms one of the major motifs present in the biopolymer RNA, is also involved in the self-assembly of RNA. In the title compound, C9H14N4O2·2H2O, the asymmetric unit contains one dimethyl­amino­uracil group and two water mol­ecules. The plane of the N=C—NMe2 side chain is inclined at 27.6 (5)° to the plane of the uracil ring. Both water mol­ecules form O—H⋯O hydrogen bonds with the carbonyl O atoms of the uracil group. Additional water–water hydrogen-bond inter­actions are also observed in the crystal structure. The O—H⋯O hydrogen bonds lead to the formation of a two-dimensional hydrogen-bonded network cage consisting of two dimethyl­amino­uracil groups and six water mol­ecules.

Related literature

For related literature, see: Pontikis & Monneret (1994[Pontikis, R. & Monneret, C. (1994). Tetrahedron Lett. 35, 4351-4354.]); Sasaki et al. (1998[Sasaki, T., Minamoto, K., Suzuki, T. & Yamashita, S. (1998). Tetrahedron, 36, 865-870.]); Sivakova & Rowan (2005[Sivakova, S. & Rowan, S. J. (2005). Chem. Soc. Rev. 34, 9-21.]); Thakur et al. (2001[Thakur, A. J., Saikia, P., Prajapati, D. & Sandhu, J. S. (2001). Synlett, 8, 1299-1301.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N4O2·2H2O

  • Mr = 246.27

  • Triclinic, [P \overline 1]

  • a = 7.1310 (5) Å

  • b = 9.8571 (7) Å

  • c = 9.9160 (7) Å

  • α = 92.921 (1)°

  • β = 101.916 (1)°

  • γ = 109.912 (1)°

  • V = 635.62 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.23 × 0.17 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 6112 measured reflections

  • 2231 independent reflections

  • 2017 reflections with I > 2˘I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.155

  • S = 1.07

  • 2231 reflections

  • 175 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2 0.86 (1) 1.93 (1) 2.784 (2) 173 (3)
O1W—H2W⋯O1Wi 0.86 (7) 2.01 (4) 2.771 (4) 147 (6)
O2W—H3W⋯O1 0.85 (1) 2.01 (2) 2.808 (2) 157 (3)
O2W—H4W⋯O1Wii 0.86 (3) 1.95 (2) 2.777 (3) 163 (6)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Uracil, the pyrimidine nucleobase, combined with Adenine comprises one of the major motifs present in the biopolymer RNA, is also involved in the self-assembly of RNA(Sivakova & Rowan, 2005) The versatility of uracil and its derivatives, particularly the annulated one, is well recognized by synthetic (Sasaki et al., 1998) as well as biological chemists (Pontikis & Monneret, 1994) owing to their wide range of biological activities. The chemistry of uracil moiety and its derivatives have expanded enormously in the past decades only because of its mechanistic, synthetic and biological importance which made them of substantial experimental and theoretical interest.

Synthesis and characterization of the title compound (I) was reported recently from our laboratory (Thakur et al., 2001), through the reaction of 6–amino–1,3–dimethylbarbituric acid with (DMF–DMA) under thermal condition or Microwave irradiation in the solid state. Our ongoing present research program is aimed at synthesizing fused pyrimidine derivatives of biological significances. Also we have been investigating the rotational barrier of the two methyl groups in the exocyclic N9-Me2 part in (I), which will help us in understanding the mechanism of the Diels Alder reaction of (I).

The asymmetric unit of (I), comprises one dimethylamino uracil moiety and two water molecules (Fig. 1). The six-membered uracil ring is planar and the plane of its attached side chain is inclined 27.6 (5)° to the plane of the uracil ring. The torsion (C6-N7-C8-C9) = 174.4 (2)°.

The crystal structure is stabilized by O—H···O hydrogen bonds (Table 1). Both the water (O1W and O2W) molecules form O—H···O hydrogen bonds with the carbonyl (O1 and O2) atoms of the uracil moiety. In addition, water···water interactions are also observed in the crystal structure. The water molecules interconnect each other and in turn links the uracil moiety, thereby forming a two-dimensional hydrogen-bonded network cage consists of two dimethylamino uracil moieties and six water molecules (Fig.2).

Related literature top

For related literature, see: Pontikis & Monneret (1994); Sasaki et al. (1998); Sivakova & Rowan (2005); Thakur et al. (2001).

Experimental top

In order to obtain suitable single crystals for this study, the title compound was dissolved in ethanol (98%) and the solution was allowed to evaporate very slowly.

Refinement top

The H atoms of the water molecules were located in a difference Fourier map and refined isotropically. Distance restraints were also applied to the H atoms of the water molecules with a set value of 0.86 (1) Å. All other H atoms were positioned geometrically and treated as riding on their parent C atoms, with C—H distances of 0.93 - 0.96 Å, and with Uiso(H) values of 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the other H atoms. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicates hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram for (I), viewed down the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code:(i) -x, -y + 1, -z + 2; (ii) x, y, z - 1].
6-[(Dimethylamino)methyleneamino]-1,3-dimethylpyrimidine-2,4(1H,3H)-dione dihydrate top
Crystal data top
C9H14N4O2·2H2OZ = 2
Mr = 246.27F(000) = 264
Triclinic, P1Dx = 1.287 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1310 (5) ÅCell parameters from 3875 reflections
b = 9.8571 (7) Åθ = 2.4–27.9°
c = 9.9160 (7) ŵ = 0.10 mm1
α = 92.921 (1)°T = 294 K
β = 101.916 (1)°Block, colorless
γ = 109.912 (1)°0.23 × 0.17 × 0.12 mm
V = 635.62 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2017 reflections with I > 2˘I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scansh = 88
6112 measured reflectionsk = 1111
2231 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0891P)2 + 0.1375P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2231 reflectionsΔρmax = 0.34 e Å3
175 parametersΔρmin = 0.21 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.063 (11)
Crystal data top
C9H14N4O2·2H2Oγ = 109.912 (1)°
Mr = 246.27V = 635.62 (8) Å3
Triclinic, P1Z = 2
a = 7.1310 (5) ÅMo Kα radiation
b = 9.8571 (7) ŵ = 0.10 mm1
c = 9.9160 (7) ÅT = 294 K
α = 92.921 (1)°0.23 × 0.17 × 0.12 mm
β = 101.916 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2017 reflections with I > 2˘I)
6112 measured reflectionsRint = 0.019
2231 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
2231 reflectionsΔρmin = 0.21 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.2362 (3)0.44519 (18)0.63139 (17)0.0495 (4)
C40.0848 (3)0.29150 (17)0.40673 (18)0.0509 (4)
C50.1553 (3)0.41767 (17)0.34303 (17)0.0513 (4)
H50.12320.41000.24650.062*
C60.2691 (2)0.55089 (16)0.41829 (17)0.0459 (4)
C80.3784 (2)0.67157 (17)0.24338 (18)0.0508 (4)
H80.35740.58080.19800.061*
C110.4645 (4)0.9307 (2)0.2396 (3)0.0780 (6)
H11A0.36310.96310.18630.117*
H11B0.59920.99700.23970.117*
H11C0.44890.92740.33340.117*
C120.4759 (4)0.7733 (3)0.0408 (2)0.0826 (7)
H12A0.46100.67450.01390.124*
H12B0.61280.83680.04230.124*
H12C0.37910.79970.02470.124*
C130.4247 (3)0.70386 (19)0.64897 (19)0.0633 (5)
H13A0.33160.74480.67600.095*
H13B0.50700.76870.59700.095*
H13C0.51230.69020.73050.095*
C140.0539 (3)0.1852 (2)0.6239 (2)0.0682 (5)
H14A0.14970.13550.63370.102*
H14B0.07810.12060.57080.102*
H14C0.04260.21640.71420.102*
N10.3072 (2)0.56267 (14)0.56224 (14)0.0491 (4)
N30.1267 (2)0.31263 (14)0.55177 (15)0.0515 (4)
N70.3477 (2)0.67916 (14)0.36771 (15)0.0520 (4)
N90.4379 (2)0.78672 (15)0.17847 (16)0.0601 (4)
O10.0098 (2)0.16688 (13)0.34493 (14)0.0693 (4)
O20.2732 (2)0.45919 (15)0.75861 (13)0.0659 (4)
O1W0.0831 (3)0.39489 (19)0.97812 (18)0.0879 (5)
H1W0.142 (4)0.408 (3)0.910 (2)0.107 (9)*
H2W0.063 (13)0.462 (7)1.025 (6)0.29 (4)*
O2W0.0201 (5)0.1195 (2)0.0614 (2)0.1259 (9)
H3W0.002 (6)0.117 (4)0.1489 (12)0.137 (13)*
H4W0.035 (9)0.202 (3)0.035 (6)0.27 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0571 (9)0.0503 (9)0.0474 (9)0.0243 (7)0.0172 (7)0.0084 (7)
C40.0550 (9)0.0433 (9)0.0534 (10)0.0150 (7)0.0150 (7)0.0052 (7)
C50.0591 (10)0.0438 (9)0.0457 (9)0.0122 (7)0.0123 (7)0.0056 (7)
C60.0500 (8)0.0412 (8)0.0497 (9)0.0182 (7)0.0154 (7)0.0067 (6)
C80.0543 (9)0.0401 (8)0.0540 (9)0.0115 (7)0.0134 (7)0.0075 (7)
C110.0987 (16)0.0435 (10)0.0887 (15)0.0145 (10)0.0328 (12)0.0165 (9)
C120.1047 (17)0.0728 (13)0.0695 (13)0.0182 (12)0.0398 (12)0.0212 (10)
C130.0772 (12)0.0492 (10)0.0566 (11)0.0160 (9)0.0158 (9)0.0056 (8)
C140.0869 (13)0.0527 (10)0.0671 (12)0.0213 (9)0.0260 (10)0.0223 (9)
N10.0591 (8)0.0421 (7)0.0469 (8)0.0178 (6)0.0158 (6)0.0026 (6)
N30.0620 (8)0.0434 (7)0.0532 (8)0.0191 (6)0.0203 (6)0.0126 (6)
N70.0604 (8)0.0392 (7)0.0539 (8)0.0132 (6)0.0163 (6)0.0073 (6)
N90.0686 (9)0.0455 (8)0.0609 (9)0.0098 (7)0.0210 (7)0.0130 (6)
O10.0873 (9)0.0408 (7)0.0646 (8)0.0042 (6)0.0191 (7)0.0023 (5)
O20.0870 (9)0.0680 (8)0.0465 (7)0.0292 (7)0.0213 (6)0.0099 (6)
O1W0.1212 (14)0.0829 (11)0.0666 (10)0.0319 (10)0.0444 (9)0.0144 (8)
O2W0.226 (3)0.0825 (13)0.0787 (13)0.0549 (15)0.0575 (15)0.0108 (10)
Geometric parameters (Å, º) top
C2—O21.225 (2)C12—N91.454 (3)
C2—N31.373 (2)C12—H12A0.9600
C2—N11.376 (2)C12—H12B0.9600
C4—O11.236 (2)C12—H12C0.9600
C4—N31.397 (2)C13—N11.471 (2)
C4—C51.408 (2)C13—H13A0.9600
C5—C61.365 (2)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—N71.365 (2)C14—N31.469 (2)
C6—N11.388 (2)C14—H14A0.9600
C8—N71.299 (2)C14—H14B0.9600
C8—N91.320 (2)C14—H14C0.9600
C8—H80.9300O1W—H1W0.86 (1)
C11—N91.449 (3)O1W—H2W0.86 (7)
C11—H11A0.9600O2W—H3W0.85 (1)
C11—H11B0.9600O2W—H4W0.86 (3)
C11—H11C0.9600
O2—C2—N3122.04 (16)H12B—C12—H12C109.5
O2—C2—N1120.84 (16)N1—C13—H13A109.5
N3—C2—N1117.11 (14)N1—C13—H13B109.5
O1—C4—N3118.78 (15)H13A—C13—H13B109.5
O1—C4—C5125.42 (16)N1—C13—H13C109.5
N3—C4—C5115.80 (14)H13A—C13—H13C109.5
C6—C5—C4122.19 (16)H13B—C13—H13C109.5
C6—C5—H5118.9N3—C14—H14A109.5
C4—C5—H5118.9N3—C14—H14B109.5
N7—C6—C5127.10 (15)H14A—C14—H14B109.5
N7—C6—N1114.39 (14)N3—C14—H14C109.5
C5—C6—N1118.48 (15)H14A—C14—H14C109.5
N7—C8—N9123.01 (16)H14B—C14—H14C109.5
N7—C8—H8118.5C2—N1—C6122.46 (14)
N9—C8—H8118.5C2—N1—C13116.47 (14)
N9—C11—H11A109.5C6—N1—C13121.06 (14)
N9—C11—H11B109.5C2—N3—C4123.83 (14)
H11A—C11—H11B109.5C2—N3—C14117.92 (15)
N9—C11—H11C109.5C4—N3—C14118.23 (15)
H11A—C11—H11C109.5C8—N7—C6117.17 (14)
H11B—C11—H11C109.5C8—N9—C11121.75 (16)
N9—C12—H12A109.5C8—N9—C12121.00 (16)
N9—C12—H12B109.5C11—N9—C12117.25 (15)
H12A—C12—H12B109.5H1W—O1W—H2W125 (6)
N9—C12—H12C109.5H3W—O2W—H4W116 (5)
H12A—C12—H12C109.5
O1—C4—C5—C6176.21 (17)N1—C2—N3—C40.1 (2)
N3—C4—C5—C64.2 (3)O2—C2—N3—C140.2 (3)
C4—C5—C6—N7178.88 (15)N1—C2—N3—C14178.55 (15)
C4—C5—C6—N13.3 (3)O1—C4—N3—C2177.81 (15)
O2—C2—N1—C6179.72 (15)C5—C4—N3—C22.6 (2)
N3—C2—N1—C61.0 (2)O1—C4—N3—C140.6 (3)
O2—C2—N1—C131.1 (2)C5—C4—N3—C14179.01 (15)
N3—C2—N1—C13179.84 (14)N9—C8—N7—C6174.40 (15)
N7—C6—N1—C2178.70 (13)C5—C6—N7—C824.2 (3)
C5—C6—N1—C20.6 (2)N1—C6—N7—C8157.94 (14)
N7—C6—N1—C130.5 (2)N7—C8—N9—C112.9 (3)
C5—C6—N1—C13178.56 (14)N7—C8—N9—C12178.23 (18)
O2—C2—N3—C4178.64 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.86 (1)1.93 (1)2.784 (2)173 (3)
O1W—H2W···O1Wi0.86 (7)2.01 (4)2.771 (4)147 (6)
O2W—H3W···O10.85 (1)2.01 (2)2.808 (2)157 (3)
O2W—H4W···O1Wii0.86 (3)1.95 (2)2.777 (3)163 (6)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC9H14N4O2·2H2O
Mr246.27
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.1310 (5), 9.8571 (7), 9.9160 (7)
α, β, γ (°)92.921 (1), 101.916 (1), 109.912 (1)
V3)635.62 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.17 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2˘I)] reflections
6112, 2231, 2017
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.155, 1.07
No. of reflections2231
No. of parameters175
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.86 (1)1.93 (1)2.784 (2)173 (3)
O1W—H2W···O1Wi0.86 (7)2.01 (4)2.771 (4)147 (6)
O2W—H3W···O10.85 (1)2.01 (2)2.808 (2)157 (3)
O2W—H4W···O1Wii0.86 (3)1.95 (2)2.777 (3)163 (6)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z1.
 

Acknowledgements

AJT thanks the Department of Science and Technology (DST), Government of India, New Delhi, for financial support and SD thanks Tezpur University for an Institutional Fellowship.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPontikis, R. & Monneret, C. (1994). Tetrahedron Lett. 35, 4351–4354.  CrossRef CAS Web of Science Google Scholar
First citationSasaki, T., Minamoto, K., Suzuki, T. & Yamashita, S. (1998). Tetrahedron, 36, 865–870.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakova, S. & Rowan, S. J. (2005). Chem. Soc. Rev. 34, 9–21.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakur, A. J., Saikia, P., Prajapati, D. & Sandhu, J. S. (2001). Synlett, 8, 1299–1301.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds