metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-chloro­benzoato-κO)bis­­(1-vinyl­imidazole-κN3)copper(II)

aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China
*Correspondence e-mail: zhaojuanqd@163.com

(Received 14 September 2008; accepted 19 September 2008; online 24 September 2008)

In the title compound, [Cu(C7H4ClO2)2(C5H6N2)2], each CuII ion, located on an inversion center, has a slightly distorted square-planar coordination geometry formed by two 1-vinyl­imidazole mol­ecules [Cu—N = 1.954 (6) Å] and two 2-chloro­benzoate anions [Cu—O = 1.958 (6) Å]. Weak inter­molecular C—H⋯O hydrogen bonds contribute to the crystal packing stability.

Related literature

A square-planar coordination environment of CuII was also observed in bis­(3-hydroxy­benzoato-κO)bis­(1H-imidazole-κN3)copper(II), see: Liu et al. (2006[Liu, J.-W., Zhu, B. & Ng, S. W. (2006). Acta Cryst. E62, m3514-m3515.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4ClO2)2(C5H6N2)2]

  • Mr = 562.89

  • Monoclinic, P 21 /c

  • a = 7.9360 (16) Å

  • b = 11.236 (2) Å

  • c = 14.190 (3) Å

  • β = 104.36 (3)°

  • V = 1225.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 0.894

  • 2204 measured reflections

  • 2115 independent reflections

  • 1620 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.192

  • S = 1.04

  • 2115 reflections

  • 154 parameters

  • 49 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.93 2.56 3.484 (10) 174
C3—H3A⋯O1ii 0.93 2.49 2.918 (8) 108
C5—H5A⋯O2i 0.93 2.45 3.342 (9) 160
C11—H11A⋯O2iii 0.93 2.60 3.460 (9) 155
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

In the title compound, (I) (Fig. 1), each Cu ion is coordinated by a pair of 1-vinylimidazole ligands and a pair of monodentate carboxylate groups, affording a square planar N2O2 coordination geometry. The CuN2O2 core involving the central atoms is almost perfectly square planar. The trans angles are all 180° for symmetry requirements and the cis ones are 89.52 (19)° and 90.48 (19)° for N—Cu—O, respectively. The Cu—N(imidazole) distance is 1.954 (6)Å and The Cu—O bond distance is 1.958 (4) Å. These bond distances are comparable with the reported data (Liu et al., 2006). The five atoms of CuN2O2 are coplanar. Distances and angles in 1-vinylimidazole are normal. The weak intermolecular C—H···O interactions (Table 1) stabilize the structure.

Related literature top

A square-planar coordination environment of CuII was also observed in bis(3-hydroxybenzoato-κO)bis(1H-imidazole-κN3)copper(II), see: Liu et al. (2006).

Experimental top

Copper(II) acetate hydrate(2.00 g, 10 mmol), 1-vinylimidazole(0.99 g, 10 mmol) and 2-chlorobenzoic acid(1.55 g, 10 mmol) were dissolved in water(40 ml). The pH of the solution was adjusted to 7 with 0.2M sodium hydroxide. The solution was filtered; blue single crystals of (I) were isolated after several days.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The unlabelled atoms are related with the labelled ones by symmetry operation (-x, -y, -z).
Bis(2-chlorobenzoato-κO)bis(1-vinylimidazole-κN3)copper(II) top
Crystal data top
[Cu(C7H4ClO2)2(C5H6N2)2]F(000) = 574
Mr = 562.89Dx = 1.525 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.9360 (16) Åθ = 10–14°
b = 11.236 (2) ŵ = 1.15 mm1
c = 14.190 (3) ÅT = 293 K
β = 104.36 (3)°Block, blue
V = 1225.8 (5) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2115 independent reflections
Radiation source: fine-focus sealed tube1620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Thin–slice ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.803, Tmax = 0.894k = 013
2204 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.07P)2 + 6P]
where P = (Fo2 + 2Fc2)/3
2115 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.73 e Å3
49 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Cu(C7H4ClO2)2(C5H6N2)2]V = 1225.8 (5) Å3
Mr = 562.89Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.9360 (16) ŵ = 1.15 mm1
b = 11.236 (2) ÅT = 293 K
c = 14.190 (3) Å0.20 × 0.10 × 0.10 mm
β = 104.36 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2115 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1620 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.894Rint = 0.039
2204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07349 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
2115 reflectionsΔρmin = 0.89 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.00000.00000.00000.0439 (4)
Cl0.3736 (3)0.36078 (18)0.02395 (17)0.0794 (6)
O10.0066 (5)0.1740 (3)0.0077 (3)0.0455 (10)
N10.3796 (8)0.0695 (5)0.1425 (4)0.0550 (14)
C10.6165 (13)0.1373 (8)0.2115 (6)0.088 (3)
H1A0.67540.06550.19610.105*
H1B0.66380.19720.24220.105*
O20.1925 (7)0.1406 (4)0.1509 (3)0.0647 (14)
N20.1911 (7)0.0008 (4)0.0642 (4)0.0527 (14)
C20.4664 (11)0.1540 (7)0.1896 (5)0.066 (2)
H2A0.41200.22700.20630.079*
C30.2436 (8)0.0933 (6)0.1068 (5)0.047
H3A0.19070.16760.11140.057*
C40.3049 (9)0.0881 (6)0.0741 (5)0.0504 (15)
H4A0.30100.16540.05130.060*
C50.4234 (9)0.0489 (6)0.1212 (5)0.0537 (16)
H5A0.51380.09170.13600.064*
C60.1057 (9)0.2068 (5)0.0889 (5)0.0501 (16)
C70.1031 (8)0.3403 (5)0.1088 (4)0.0433 (13)
C80.2177 (9)0.4153 (6)0.0813 (4)0.0513 (15)
C90.2146 (11)0.5370 (6)0.0999 (6)0.0662 (19)
H9A0.29260.58820.08120.079*
C100.0945 (11)0.5801 (6)0.1461 (6)0.0676 (19)
H10A0.09060.66130.15800.081*
C110.0196 (11)0.5057 (7)0.1749 (5)0.0648 (18)
H11A0.09900.53600.20710.078*
C120.0162 (10)0.3853 (6)0.1558 (5)0.0580 (17)
H12A0.09430.33440.17460.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0696 (7)0.0204 (5)0.0350 (5)0.0026 (5)0.0001 (5)0.0014 (4)
Cl0.1031 (15)0.0558 (11)0.0838 (14)0.0230 (11)0.0319 (12)0.0061 (10)
O10.060 (2)0.030 (2)0.043 (2)0.0052 (19)0.0066 (19)0.0033 (18)
N10.088 (4)0.033 (3)0.035 (3)0.009 (3)0.004 (3)0.002 (2)
C10.115 (7)0.071 (6)0.079 (6)0.004 (5)0.029 (6)0.011 (5)
O20.094 (4)0.029 (2)0.058 (3)0.003 (2)0.006 (3)0.009 (2)
N20.075 (3)0.024 (2)0.048 (3)0.008 (3)0.008 (3)0.001 (2)
C20.096 (6)0.054 (5)0.042 (4)0.004 (4)0.004 (4)0.007 (3)
C30.0470.0470.0470.0000.0120.000
C40.068 (4)0.035 (3)0.043 (3)0.008 (3)0.006 (3)0.003 (3)
C50.067 (4)0.043 (3)0.045 (4)0.001 (3)0.001 (3)0.009 (3)
C60.074 (4)0.020 (3)0.050 (4)0.004 (3)0.004 (3)0.000 (3)
C70.064 (3)0.028 (3)0.031 (3)0.002 (2)0.001 (2)0.002 (2)
C80.072 (4)0.037 (3)0.040 (3)0.011 (3)0.004 (3)0.002 (3)
C90.091 (5)0.039 (3)0.062 (4)0.017 (3)0.008 (4)0.001 (3)
C100.091 (5)0.035 (3)0.063 (4)0.005 (3)0.007 (3)0.007 (3)
C110.086 (4)0.053 (4)0.051 (4)0.017 (3)0.010 (3)0.013 (3)
C120.085 (4)0.042 (3)0.047 (3)0.002 (3)0.017 (3)0.007 (3)
Geometric parameters (Å, º) top
Cu—N2i1.954 (6)C3—H3A0.9300
Cu—N21.954 (6)C4—C51.356 (9)
Cu—O1i1.958 (4)C4—H4A0.9300
Cu—O11.958 (4)C5—H5A0.9300
Cl—C81.751 (7)C6—C71.528 (8)
O1—C61.278 (7)C7—C81.366 (8)
N1—C31.327 (8)C7—C121.383 (9)
N1—C51.389 (9)C8—C91.394 (10)
N1—C21.433 (9)C9—C101.372 (11)
C1—C21.317 (10)C9—H9A0.9300
C1—H1A0.9300C10—C111.367 (11)
C1—H1B0.9300C10—H10A0.9300
O2—C61.225 (7)C11—C121.381 (9)
N2—C31.320 (8)C11—H11A0.9300
N2—C41.377 (8)C12—H12A0.9300
C2—H2A0.9300
N2i—Cu—N2180.0 (3)C4—C5—N1104.5 (6)
N2i—Cu—O1i89.52 (19)C4—C5—H5A127.7
N2—Cu—O1i90.48 (19)N1—C5—H5A127.7
N2i—Cu—O190.48 (19)O2—C6—O1125.6 (5)
N2—Cu—O189.52 (19)O2—C6—C7119.7 (6)
O1i—Cu—O1180.0 (4)O1—C6—C7114.6 (5)
C6—O1—Cu109.9 (4)C8—C7—C12119.8 (6)
C3—N1—C5107.1 (6)C8—C7—C6120.9 (6)
C3—N1—C2125.1 (6)C12—C7—C6119.4 (6)
C5—N1—C2127.8 (6)C7—C8—C9120.4 (7)
C2—C1—H1A120.0C7—C8—Cl120.9 (5)
C2—C1—H1B120.0C9—C8—Cl118.6 (5)
H1A—C1—H1B120.0C10—C9—C8118.9 (7)
C3—N2—C4103.6 (6)C10—C9—H9A120.5
C3—N2—Cu125.9 (4)C8—C9—H9A120.5
C4—N2—Cu130.4 (4)C11—C10—C9121.1 (7)
C1—C2—N1125.6 (8)C11—C10—H10A119.4
C1—C2—H2A117.2C9—C10—H10A119.4
N1—C2—H2A117.2C10—C11—C12119.6 (7)
N2—C3—N1113.2 (6)C10—C11—H11A120.2
N2—C3—H3A123.4C12—C11—H11A120.2
N1—C3—H3A123.4C11—C12—C7120.1 (7)
C5—C4—N2111.6 (6)C11—C12—H12A119.9
C5—C4—H4A124.2C7—C12—H12A119.9
N2—C4—H4A124.2
N2i—Cu—O1—C692.5 (4)Cu—O1—C6—O24.0 (9)
N2—Cu—O1—C687.5 (4)Cu—O1—C6—C7172.6 (4)
O1i—Cu—N2—C317.5 (5)O2—C6—C7—C892.3 (8)
O1—Cu—N2—C3162.5 (5)O1—C6—C7—C890.9 (7)
O1i—Cu—N2—C4160.1 (5)O2—C6—C7—C1287.2 (8)
O1—Cu—N2—C419.9 (5)O1—C6—C7—C1289.6 (7)
C3—N1—C2—C1168.6 (8)C12—C7—C8—C90.4 (10)
C5—N1—C2—C18.3 (11)C6—C7—C8—C9179.9 (6)
C4—N2—C3—N10.2 (7)C12—C7—C8—Cl178.6 (5)
Cu—N2—C3—N1178.3 (4)C6—C7—C8—Cl0.9 (8)
C5—N1—C3—N20.6 (7)C7—C8—C9—C100.1 (10)
C2—N1—C3—N2178.0 (5)Cl—C8—C9—C10179.0 (6)
C3—N2—C4—C50.3 (7)C8—C9—C10—C110.8 (11)
Cu—N2—C4—C5177.7 (4)C9—C10—C11—C121.1 (11)
N2—C4—C5—N10.7 (7)C10—C11—C12—C70.7 (11)
C3—N1—C5—C40.8 (7)C8—C7—C12—C110.0 (10)
C2—N1—C5—C4178.0 (6)C6—C7—C12—C11179.6 (6)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2ii0.932.563.484 (10)174
C3—H3A···O1i0.932.492.918 (8)108
C5—H5A···O2ii0.932.453.342 (9)160
C11—H11A···O2iii0.932.603.460 (9)155
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H4ClO2)2(C5H6N2)2]
Mr562.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.9360 (16), 11.236 (2), 14.190 (3)
β (°) 104.36 (3)
V3)1225.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.803, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
2204, 2115, 1620
Rint0.039
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.192, 1.04
No. of reflections2115
No. of parameters154
No. of restraints49
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.89

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.932.563.484 (10)174
C3—H3A···O1ii0.932.492.918 (8)108
C5—H5A···O2i0.932.453.342 (9)160
C11—H11A···O2iii0.932.603.460 (9)155
Symmetry codes: (i) x1, y, z; (ii) x, y, z; (iii) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (Y2006B12).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, J.-W., Zhu, B. & Ng, S. W. (2006). Acta Cryst. E62, m3514–m3515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds