organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-(4-Hydr­­oxy-3-nitro­benzyl­­idene­amino)-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Chemistry, Lishui University, Lishui 323000, ZheJiang, People's Republic of China
*Correspondence e-mail: zjlsxyhx@126.com

(Received 15 September 2008; accepted 18 September 2008; online 24 September 2008)

In the title compound, C18H16N4O4, the dihedral angles between the central pyrazole ring and the pendant substituted and unsubstituted aromatic rings are 4.73 (12) and 44.24 (14)°, respectively. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal structure, an inter­molecular C—H⋯O inter­action may help to consolidate the packing and a short intra­molecular C—H⋯O contact also occurs.

Related literature

For selected background literature on Schiff bases, see: Alemi & Shaabani (2000[Alemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov. 47, 363-369.]); Kim & Shin (1999[Kim, G. J. & Shin, J. H. (1999). Catal. Lett. 63, 83-89.]); Yan et al. (2006[Yan, G.-B., Yang, M.-H. & Zheng, Y.-F. (2006). Acta Cryst. E62, m3481-m3482.]); Zheng et al. (2006[Zheng, Y.-F., Yan, G.-B. & Gu, Y.-B. (2006). Acta Cryst. E62, o5134-o5135.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N4O4

  • Mr = 352.35

  • Monoclinic, P 21 /c

  • a = 7.5000 (15) Å

  • b = 7.8000 (16) Å

  • c = 28.900 (6) Å

  • β = 95.00 (3)°

  • V = 1684.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.29 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.982

  • 12221 measured reflections

  • 3012 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.160

  • S = 0.83

  • 3012 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.88 2.583 (3) 143
C12—H12⋯O1 0.93 2.45 3.096 (3) 127
C18—H18⋯O4i 0.93 2.38 3.079 (4) 132
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There have been of great interest in the synthesis, characterization, and properties of Schiff bases and Schiff base complexes. (Yan et al., 2006; Zheng et al., 2006) Schiff bases that have solvent dependent UV/vis spectra (solvatochromicity) can be suitable NLO (nonlinear optical active) materials (Alemi et al., 2000). They are also useful in asymmetric oxidation of methyl phenyl sulfide and enantioselective reactions (Kim et al., 1999).

In this paper, we report here the synthesis and crystal structure of the title compound (I), (Fig. 1). The dihedral angles betweem the pyrazole ring and the pendant C13 and C1 aromatic rings are 4.73 (12)° and 44.24 (14)°, respectively. The C12—N3 bond length of 1.281 (3) Å in (I) is indicative of a normal C=N double bond.

The intra- and intermolecular hydrogen bonds in (I) are listed in Table 1.

Related literature top

For selected background literature on Schiff bases, see: Alemi & Shaabani (2000); Kim & Shin (1999); Yan et al. (2006); Zheng et al. (2006).

Experimental top

Under nitrogen, a mixture of 4-hydroxy-3-nitrobenzaldehyde (1.67 g, 10 mmol) and 4-amino-1,2-dihydro-1,5-dimethyl-1-phenylpyrazol-3-one (2.03 g, 10 mmol) in absolute ethanol (80 ml) was refluxed for about 20 h to yield a yellow precipitate. The product was collected by vacuum filtration and washed with ethanol. The crude solid was redissolved in CH2Cl2 (70 ml) and washed with water (2 × 8 ml) and brine (10 ml). After being dried over Na2SO4, the solvent was removed under vacuum, and yellow solid was isolated in a yield of 89% (2.8 g). Colourless blocks of (I) were grown from CH2Cl2 and absolute ethanol (4:1 v/v) by slow evaporation of the solvent at room temperature over a period of about two weeks.

Refinement top

All the H atoms were placed in calculated positions (C—H = 0.93-0.96Å, O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl C). The maximum difference peak is located 1.41Å from H11C.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I): non-H atoms are shown as 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I), with C—H···O hydrogen bonds indicated by dotted lines.
(E)-4-(4-Hydroxy-3-nitrobenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C18H16N4O4F(000) = 736
Mr = 352.35Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3012 reflections
a = 7.5000 (15) Åθ = 3.2–25.2°
b = 7.8000 (16) ŵ = 0.10 mm1
c = 28.900 (6) ÅT = 298 K
β = 95.00 (3)°Block, colourless
V = 1684.2 (6) Å30.29 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3012 independent reflections
Radiation source: fine-focus sealed tube1762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 25.2°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.971, Tmax = 0.982k = 99
12221 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
3012 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H16N4O4V = 1684.2 (6) Å3
Mr = 352.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5000 (15) ŵ = 0.10 mm1
b = 7.8000 (16) ÅT = 298 K
c = 28.900 (6) Å0.29 × 0.22 × 0.18 mm
β = 95.00 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3012 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1762 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.982Rint = 0.063
12221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 0.83Δρmax = 0.22 e Å3
3012 reflectionsΔρmin = 0.18 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.1353 (3)0.2354 (3)0.45196 (7)0.0455 (5)
N10.0863 (3)0.4373 (3)0.35252 (7)0.0467 (5)
N20.1349 (3)0.2664 (3)0.34216 (7)0.0476 (5)
O10.0566 (2)0.0019 (2)0.37369 (6)0.0537 (5)
O20.6074 (3)0.0082 (3)0.63167 (6)0.0704 (6)
H20.62250.10960.63840.106*
O30.5569 (3)0.3329 (3)0.61887 (8)0.0807 (7)
O40.3986 (4)0.4244 (3)0.55889 (10)0.1126 (10)
N40.4606 (3)0.3063 (3)0.58221 (9)0.0648 (7)
C130.2714 (3)0.0531 (3)0.51068 (8)0.0399 (6)
C120.1594 (3)0.0821 (3)0.46713 (8)0.0429 (6)
H120.10640.00990.45070.052*
C80.0330 (3)0.2717 (3)0.41051 (8)0.0416 (6)
C90.0055 (3)0.4366 (3)0.39532 (8)0.0459 (6)
C150.4212 (3)0.1337 (3)0.56753 (8)0.0438 (6)
C140.3086 (3)0.1094 (3)0.52690 (8)0.0441 (6)
H140.25880.20370.51080.053*
C160.4969 (3)0.0046 (4)0.59269 (8)0.0475 (6)
C10.1830 (3)0.2178 (3)0.29503 (8)0.0452 (6)
C180.3488 (3)0.1923 (3)0.53588 (8)0.0469 (6)
H180.32550.30320.52520.056*
C170.4577 (3)0.1682 (4)0.57589 (9)0.0532 (7)
H170.50600.26290.59200.064*
C50.3461 (4)0.0338 (4)0.24047 (11)0.0689 (9)
H50.42150.05970.23440.083*
C110.2133 (4)0.5723 (4)0.33705 (10)0.0596 (7)
H11A0.32400.55460.35070.089*
H11B0.23460.56900.30380.089*
H11C0.16460.68200.34650.089*
C60.2976 (3)0.0829 (4)0.28630 (9)0.0567 (7)
H60.34300.02430.31070.068*
C70.0519 (3)0.1560 (3)0.37629 (8)0.0426 (6)
C20.1161 (3)0.3056 (4)0.25858 (9)0.0541 (7)
H2A0.03620.39580.26440.065*
C100.0618 (4)0.5984 (4)0.41979 (10)0.0609 (8)
H10A0.10120.67920.39780.091*
H10B0.15800.57470.44300.091*
H10C0.03760.64560.43430.091*
C40.2831 (4)0.1223 (5)0.20437 (10)0.0719 (9)
H4A0.31760.09070.17390.086*
C30.1694 (4)0.2575 (4)0.21333 (10)0.0647 (8)
H3A0.12730.31790.18880.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0446 (11)0.0477 (13)0.0434 (11)0.0035 (10)0.0014 (9)0.0012 (10)
N10.0526 (12)0.0365 (12)0.0494 (12)0.0018 (9)0.0047 (10)0.0019 (10)
N20.0552 (12)0.0400 (12)0.0460 (12)0.0004 (10)0.0053 (10)0.0005 (10)
O10.0650 (11)0.0391 (12)0.0553 (11)0.0023 (9)0.0039 (9)0.0010 (8)
O20.0653 (12)0.0933 (17)0.0495 (11)0.0028 (12)0.0130 (9)0.0004 (11)
O30.0720 (13)0.0872 (17)0.0802 (15)0.0107 (12)0.0085 (12)0.0363 (13)
O40.156 (3)0.0433 (14)0.128 (2)0.0001 (15)0.046 (2)0.0050 (15)
N40.0638 (15)0.0563 (17)0.0732 (17)0.0019 (13)0.0001 (13)0.0142 (14)
C130.0383 (12)0.0411 (15)0.0407 (13)0.0002 (11)0.0055 (10)0.0025 (11)
C120.0407 (13)0.0445 (15)0.0432 (13)0.0011 (11)0.0014 (11)0.0032 (12)
C80.0411 (13)0.0407 (15)0.0425 (13)0.0012 (11)0.0003 (11)0.0008 (11)
C90.0463 (13)0.0438 (15)0.0470 (14)0.0001 (12)0.0008 (12)0.0019 (12)
C150.0439 (13)0.0415 (15)0.0462 (14)0.0022 (11)0.0057 (11)0.0083 (11)
C140.0429 (13)0.0420 (15)0.0474 (14)0.0048 (11)0.0038 (11)0.0009 (11)
C160.0443 (13)0.0605 (17)0.0374 (12)0.0003 (13)0.0020 (11)0.0000 (12)
C10.0433 (13)0.0477 (15)0.0429 (14)0.0014 (12)0.0057 (11)0.0020 (12)
C180.0521 (14)0.0410 (15)0.0471 (14)0.0015 (12)0.0019 (12)0.0029 (12)
C170.0552 (15)0.0544 (17)0.0495 (15)0.0047 (13)0.0017 (12)0.0136 (13)
C50.0616 (18)0.072 (2)0.0689 (19)0.0080 (16)0.0160 (16)0.0100 (17)
C110.0629 (17)0.0473 (17)0.0666 (18)0.0118 (14)0.0056 (14)0.0077 (14)
C60.0508 (15)0.0625 (18)0.0556 (16)0.0043 (14)0.0018 (13)0.0015 (14)
C70.0412 (13)0.0418 (16)0.0446 (14)0.0027 (11)0.0031 (11)0.0029 (11)
C20.0522 (15)0.0580 (18)0.0510 (15)0.0007 (13)0.0020 (12)0.0010 (13)
C100.0699 (18)0.0448 (17)0.0655 (18)0.0009 (14)0.0083 (15)0.0039 (14)
C40.078 (2)0.084 (2)0.0497 (17)0.0033 (19)0.0156 (16)0.0075 (16)
C30.0688 (18)0.078 (2)0.0468 (16)0.0034 (17)0.0002 (14)0.0073 (15)
Geometric parameters (Å, º) top
N3—C121.281 (3)C14—H140.9300
N3—C81.394 (3)C16—C171.388 (4)
N1—C91.362 (3)C1—C61.368 (4)
N1—N21.407 (3)C1—C21.387 (4)
N1—C111.464 (3)C18—C171.369 (3)
N2—C71.412 (3)C18—H180.9300
N2—C11.429 (3)C17—H170.9300
O1—C71.235 (3)C5—C41.369 (4)
O2—C161.343 (3)C5—C61.396 (4)
O2—H20.8200C5—H50.9300
O3—N41.246 (3)C11—H11A0.9600
O4—N41.210 (3)C11—H11B0.9600
N4—C151.435 (3)C11—H11C0.9600
C13—C141.372 (3)C6—H60.9300
C13—C181.404 (3)C2—C31.385 (4)
C13—C121.469 (3)C2—H2A0.9300
C12—H120.9300C10—H10A0.9600
C8—C91.369 (3)C10—H10B0.9600
C8—C71.445 (3)C10—H10C0.9600
C9—C101.490 (4)C4—C31.366 (4)
C15—C161.394 (4)C4—H4A0.9300
C15—C141.398 (3)C3—H3A0.9300
C12—N3—C8122.3 (2)C17—C18—H18119.3
C9—N1—N2106.88 (19)C13—C18—H18119.3
C9—N1—C11123.0 (2)C18—C17—C16121.0 (2)
N2—N1—C11117.86 (19)C18—C17—H17119.5
N1—N2—C7109.80 (19)C16—C17—H17119.5
N1—N2—C1119.56 (19)C4—C5—C6120.4 (3)
C7—N2—C1124.3 (2)C4—C5—H5119.8
C16—O2—H2109.5C6—C5—H5119.8
O4—N4—O3120.8 (3)N1—C11—H11A109.5
O4—N4—C15119.4 (2)N1—C11—H11B109.5
O3—N4—C15119.8 (3)H11A—C11—H11B109.5
C14—C13—C18118.4 (2)N1—C11—H11C109.5
C14—C13—C12121.3 (2)H11A—C11—H11C109.5
C18—C13—C12120.3 (2)H11B—C11—H11C109.5
N3—C12—C13119.4 (2)C1—C6—C5119.6 (3)
N3—C12—H12120.3C1—C6—H6120.2
C13—C12—H12120.3C5—C6—H6120.2
C9—C8—N3121.5 (2)O1—C7—N2123.9 (2)
C9—C8—C7108.8 (2)O1—C7—C8132.3 (2)
N3—C8—C7129.6 (2)N2—C7—C8103.8 (2)
N1—C9—C8110.2 (2)C3—C2—C1119.3 (3)
N1—C9—C10121.8 (2)C3—C2—H2A120.3
C8—C9—C10128.0 (2)C1—C2—H2A120.3
C16—C15—C14121.5 (2)C9—C10—H10A109.5
C16—C15—N4120.5 (2)C9—C10—H10B109.5
C14—C15—N4118.0 (2)H10A—C10—H10B109.5
C13—C14—C15120.1 (2)C9—C10—H10C109.5
C13—C14—H14119.9H10A—C10—H10C109.5
C15—C14—H14119.9H10B—C10—H10C109.5
O2—C16—C17117.3 (2)C3—C4—C5119.7 (3)
O2—C16—C15125.0 (2)C3—C4—H4A120.1
C17—C16—C15117.7 (2)C5—C4—H4A120.1
C6—C1—C2120.2 (2)C4—C3—C2120.8 (3)
C6—C1—N2118.8 (2)C4—C3—H3A119.6
C2—C1—N2121.0 (2)C2—C3—H3A119.6
C17—C18—C13121.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.882.583 (3)143
C12—H12···O10.932.453.096 (3)127
C18—H18···O4i0.932.383.079 (4)132
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H16N4O4
Mr352.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.5000 (15), 7.8000 (16), 28.900 (6)
β (°) 95.00 (3)
V3)1684.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12221, 3012, 1762
Rint0.063
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.160, 0.83
No. of reflections3012
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.882.583 (3)143
C12—H12···O10.932.453.096 (3)127
C18—H18···O4i0.932.383.079 (4)132
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081) for financial support.

References

First citationAlemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov. 47, 363–369.  CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationKim, G. J. & Shin, J. H. (1999). Catal. Lett. 63, 83–89.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, G.-B., Yang, M.-H. & Zheng, Y.-F. (2006). Acta Cryst. E62, m3481–m3482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-F., Yan, G.-B. & Gu, Y.-B. (2006). Acta Cryst. E62, o5134–o5135.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds