supplementary materials


Acta Cryst. (2008). E64, m1276-m1277    [ doi:10.1107/S1600536808029139 ]

A tetranuclear chlorido-bridged manganese(II) cluster with imidazole ligands

M. A. Kurawa, C. J. Adams and A. G. Orpen

Abstract top

The crystal structure of di-[mu]3-chlorido-tetra-[mu]2-chlorido-dichloridoocta(imidazole-[kappa]N)tetramanganese(II) ethanol 1.234 solvate, [Mn4Cl8(C3H4N2)8]·1.234C2H5O or [Mn4Cl8(Him)8]·1.234EtOH, where Him is imidazole (C3H4N2), is based upon two Mn4Cl4 cubes which share one face, and which each lack one manganese vertex, giving a Mn4Cl6 unit. This contains two different octahedral coordination environments for the Mn atoms. Mn1 is coordinated by four bridging chlorido ligands and two imidazole N atoms, whereas Mn2 is coordinated by three bridging and one terminal Cl and two imidazole N atoms. The remaining two Mn centres are generated by inversion symmetry. A partial occupancy solvent molecule (ethanol) is present. The crystal structure displays several N-H...Cl and N-H...O hydrogen bonds.

Comment top

During our exploration of solid state routes for accessing coordination compounds, we ground CdCl2 with imidazole to form polymeric [{CdCl2(Him)2}n], whose structure was reported by Flook et al. (1973). We sought to synthesize the manganese analogue in a similar fashion by grinding MnCl2.4H2O with an equimolar amount of imidazole. The resulting polycrystalline powder (of unknown structure) was recrystallized from absolute ethanol to afford a single-crystal. The title compound I was obtained, which crystallizes in the triclinic crystal system in the P1 space group. The molecule is centrosymmetric, containing four manganese atoms in two different coordination environments and crystallizes across an inversion centre so there is a half a molecule in the asymmetric unit. One type of manganese atom is bonded to four bridging (two µ2-Cl and two µ3-Cl) chlorine atoms, and two imidazole N atoms, completing an octahedral coordination sphere. The second is type is bonded to three bridging (two µ2-Cl and one µ3-Cl) and one terminal chlorine atoms, again with two imidazole N atoms completing octahedral coordination. One of the imidazole ligands shows a carbon-nitrogen disorder, and a partial occupancy solvent molecule (ethanol) is present in the crystal structure, giving rise to N—H···O hydrogen bonds in addition to the N—H···Cl bonds between the chlorine atoms and the imidazole NH donors. The calculated powder pattern of I does not match that obtained from the crude material.

Related literature top

Lee et al. (2000) reported the structure and magnetic properties of a similar chloro-bridged tetranuclear cluster of cadmium(II) with 2(2-pyridyl)-4,4',5,5'-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy 3-N-oxide (NIToPY). For the structure of [{CdCl2(Him)2}n], see: Flook et al. (1973).

Experimental top

1 mmol of MnCl2.4H2O was ground with 2 mmol of imidazole resulting in the formation of an off-white polycrystalline powder. This was dissolved in absolute alcohol and the resulting solution allowed to evaporate slowly at room temperature, leading to the formation of colourless needle-like crystals.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 (2) Å and N—H = 0.88 (2) Å and Uiso(H) = 1.2 times Ueq(C, N) for the imidazole rings and C—H = 0.99 (2) Å and Uiso(H) = 1.5 times Ueq(C) for the ethanol molecule.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry code (A):-x, -y, -z + 1]
[Figure 2] Fig. 2. Hydrogen bond environment for I, showing only chlorine atoms of the neighbouring cluster.
di-µ3-chlorido-tetra-µ2-chlorido-dichloridoocta(imidazole- κN)tetramanganese(II) ethanol 1.234-solvate top
Crystal data top
[Mn4Cl8(C3H4N2)8]·1.234C2H5OZ = 1
Mr = 1103.45F(000) = 554.8
Triclinic, P1Dx = 1.688 Mg m3
a = 8.4763 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.696 (2) ÅCell parameters from 3784 reflections
c = 12.764 (2) Åθ = 2.3–27.5°
α = 99.206 (3)°µ = 1.68 mm1
β = 105.706 (4)°T = 173 K
γ = 96.187 (3)°Needle, colourless
V = 1085.7 (3) Å30.35 × 0.10 × 0.10 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
4920 independent reflections
Radiation source: fine-focus sealed tube3315 reflections with I > 2σ(I)
graphiteRint = 0.048
phi and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1110
Tmin = 0.815, Tmax = 0.850k = 1313
11294 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.055P)2 + 2.417P]
where P = (Fo2 + 2Fc2)/3
4920 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Mn4Cl8(C3H4N2)8]·1.234C2H5Oγ = 96.187 (3)°
Mr = 1103.45V = 1085.7 (3) Å3
Triclinic, P1Z = 1
a = 8.4763 (16) ÅMo Kα radiation
b = 10.696 (2) ŵ = 1.68 mm1
c = 12.764 (2) ÅT = 173 K
α = 99.206 (3)°0.35 × 0.10 × 0.10 mm
β = 105.706 (4)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4920 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3315 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.850Rint = 0.048
11294 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.142Δρmax = 1.17 e Å3
S = 1.04Δρmin = 0.77 e Å3
4920 reflectionsAbsolute structure: ?
265 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.11612 (8)0.13627 (6)0.44334 (5)0.01743 (18)
Mn20.14342 (8)0.17089 (6)0.75623 (5)0.01930 (19)
Cl10.15783 (14)0.04351 (11)0.30310 (9)0.0227 (3)
Cl20.18410 (13)0.00684 (10)0.40027 (9)0.0191 (2)
Cl30.05611 (13)0.29485 (10)0.59545 (9)0.0194 (2)
Cl40.07690 (15)0.33793 (11)0.88887 (9)0.0258 (3)
N10.0440 (5)0.2621 (4)0.3243 (3)0.0242 (9)
N20.0167 (5)0.4279 (4)0.2492 (3)0.0319 (10)
H2A0.04560.50330.24180.038*
N30.3775 (5)0.2228 (3)0.4924 (3)0.0208 (8)
N40.6483 (5)0.2509 (4)0.5285 (4)0.0313 (10)
H6A0.74860.23430.53120.038*
N50.4062 (5)0.2587 (4)0.7973 (3)0.0273 (9)
N60.6744 (5)0.2843 (4)0.8230 (4)0.0339 (10)
H10A0.77200.26860.81760.041*
N70.2169 (5)0.0477 (4)0.8769 (3)0.0305 (10)
C110.2455 (11)0.0398 (8)1.0273 (6)0.093 (4)0.14 (9)
H110.23510.05641.09630.111*
N8'0.2455 (11)0.0398 (8)1.0273 (6)0.093 (4)0.86 (9)
C10.0020 (6)0.3753 (5)0.3382 (4)0.0276 (11)
H1A0.02240.41510.40430.033*
C20.0570 (9)0.2431 (6)0.2190 (4)0.0452 (16)
H4B0.08770.16840.18350.054*
C30.0209 (8)0.3439 (5)0.1723 (5)0.0419 (15)
H3B0.02160.35430.09990.050*
C40.5062 (6)0.1690 (5)0.4816 (4)0.0274 (11)
H5A0.49920.08300.44510.033*
C50.6102 (6)0.3629 (5)0.5705 (5)0.0346 (13)
H7B0.68610.43900.60820.042*
C60.4431 (6)0.3469 (5)0.5491 (4)0.0280 (11)
H8A0.38110.41050.56970.034*
C70.5294 (6)0.2089 (5)0.7709 (4)0.0266 (11)
H9A0.51640.12960.72120.032*
C80.6458 (8)0.3888 (6)0.8853 (6)0.0563 (19)
H11A0.72590.45910.93120.068*
C90.4800 (8)0.3732 (6)0.8693 (6)0.060 (2)
H12B0.42300.43210.90260.072*
C100.1834 (11)0.0537 (8)0.9716 (6)0.071 (2)
H13A0.12350.11490.99890.085*
N80.3293 (11)0.1058 (8)0.9569 (8)0.079 (4)0.14 (9)
H80.38280.17040.97000.095*
C11'0.3293 (11)0.1058 (8)0.9569 (8)0.079 (4)0.86 (9)
C120.3115 (11)0.0513 (9)0.8673 (8)0.090 (3)
H16A0.35560.07570.80750.108*
O10.5305 (15)0.7035 (11)0.9177 (10)0.111 (4)0.617 (10)
C130.443 (2)0.6632 (16)0.7342 (11)0.097 (6)0.617 (10)
H17A0.37230.72990.72600.145*0.617 (10)
H18B0.37650.58300.73590.145*0.617 (10)
H19C0.48870.64970.67130.145*0.617 (10)
C140.548 (3)0.694 (2)0.8143 (16)0.128 (8)0.617 (10)
H20A0.60280.77970.81170.154*0.617 (10)
H21B0.62910.63500.80980.154*0.617 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0148 (4)0.0163 (4)0.0199 (4)0.0015 (3)0.0049 (3)0.0011 (3)
Mn20.0151 (4)0.0200 (4)0.0188 (4)0.0021 (3)0.0003 (3)0.0009 (3)
Cl10.0185 (6)0.0204 (6)0.0263 (6)0.0020 (5)0.0062 (5)0.0021 (4)
Cl20.0148 (6)0.0177 (5)0.0223 (5)0.0032 (4)0.0025 (4)0.0014 (4)
Cl30.0173 (6)0.0194 (6)0.0200 (5)0.0041 (4)0.0040 (4)0.0013 (4)
Cl40.0244 (6)0.0255 (6)0.0237 (6)0.0007 (5)0.0069 (5)0.0036 (5)
N10.026 (2)0.025 (2)0.0202 (19)0.0022 (18)0.0055 (17)0.0034 (16)
N20.036 (3)0.024 (2)0.035 (2)0.008 (2)0.006 (2)0.0108 (19)
N30.017 (2)0.016 (2)0.030 (2)0.0015 (16)0.0058 (17)0.0050 (16)
N40.011 (2)0.036 (3)0.046 (3)0.0024 (18)0.0052 (19)0.012 (2)
N50.016 (2)0.028 (2)0.030 (2)0.0015 (18)0.0011 (17)0.0047 (18)
N60.016 (2)0.042 (3)0.038 (2)0.006 (2)0.0026 (19)0.003 (2)
N70.031 (3)0.030 (2)0.027 (2)0.006 (2)0.0024 (19)0.0121 (18)
C110.119 (7)0.097 (7)0.067 (5)0.025 (6)0.014 (5)0.049 (5)
N8'0.119 (7)0.097 (7)0.067 (5)0.025 (6)0.014 (5)0.049 (5)
C10.037 (3)0.021 (3)0.028 (3)0.012 (2)0.013 (2)0.007 (2)
C20.081 (5)0.034 (3)0.030 (3)0.019 (3)0.028 (3)0.008 (2)
C30.065 (4)0.035 (3)0.029 (3)0.004 (3)0.019 (3)0.010 (2)
C40.020 (3)0.027 (3)0.036 (3)0.006 (2)0.007 (2)0.009 (2)
C50.021 (3)0.031 (3)0.048 (3)0.005 (2)0.008 (2)0.008 (2)
C60.020 (3)0.022 (3)0.040 (3)0.004 (2)0.008 (2)0.004 (2)
C70.020 (3)0.030 (3)0.026 (2)0.007 (2)0.003 (2)0.002 (2)
C80.026 (3)0.052 (4)0.069 (4)0.004 (3)0.004 (3)0.025 (3)
C90.033 (4)0.045 (4)0.081 (5)0.009 (3)0.017 (3)0.038 (3)
C100.103 (7)0.069 (5)0.053 (4)0.032 (5)0.025 (4)0.031 (4)
N80.076 (6)0.059 (5)0.087 (7)0.011 (4)0.011 (5)0.033 (5)
C11'0.076 (6)0.059 (5)0.087 (7)0.011 (4)0.011 (5)0.033 (5)
C120.075 (6)0.087 (7)0.091 (6)0.005 (5)0.014 (5)0.050 (6)
O10.111 (10)0.106 (9)0.117 (9)0.045 (7)0.025 (8)0.015 (7)
C130.145 (17)0.109 (13)0.043 (8)0.071 (12)0.023 (9)0.009 (8)
C140.15 (2)0.18 (2)0.097 (14)0.066 (17)0.072 (15)0.041 (15)
Geometric parameters (Å, °) top
Mn1—N32.186 (4)N6—H10A0.8800
Mn1—N12.196 (4)N7—C101.308 (8)
Mn1—Cl12.5328 (13)N7—C121.405 (10)
Mn1—Cl32.5636 (13)C11—C101.387 (10)
Mn1—Cl22.6332 (13)C11—N81.436 (11)
Mn1—Cl2i2.6841 (13)C11—H110.9500
Mn2—N72.192 (4)C1—H1A0.9500
Mn2—N52.208 (4)C2—C31.338 (8)
Mn2—Cl42.4784 (14)C2—H4B0.9500
Mn2—Cl32.6033 (13)C3—H3B0.9500
Mn2—Cl1i2.6121 (14)C4—H5A0.9500
Mn2—Cl2i2.6498 (13)C5—C61.355 (7)
Cl1—Mn2i2.6121 (14)C5—H7B0.9500
Cl2—Mn2i2.6498 (13)C6—H8A0.9500
Cl2—Mn1i2.6841 (13)C7—H9A0.9500
N1—C11.311 (6)C8—C91.353 (8)
N1—C21.364 (6)C8—H11A0.9500
N2—C11.329 (6)C9—H12B0.9500
N2—C31.349 (7)C10—H13A0.9500
N2—H2A0.8800N8—C121.345 (10)
N3—C41.316 (6)N8—H80.8800
N3—C61.382 (6)C12—H16A0.9500
N4—C41.338 (6)O1—C141.356 (18)
N4—C51.341 (7)C13—C141.13 (2)
N4—H6A0.8800C13—H17A0.9800
N5—C71.319 (6)C13—H18B0.9800
N5—C91.378 (7)C13—H19C0.9800
N6—C71.332 (6)C14—H20A0.9900
N6—C81.349 (7)C14—H21B0.9900
N3—Mn1—N192.56 (14)C7—N6—H10A125.9
N3—Mn1—Cl192.29 (10)C8—N6—H10A125.9
N1—Mn1—Cl195.12 (11)C10—N7—C12107.3 (6)
N3—Mn1—Cl392.37 (10)C10—N7—Mn2126.6 (5)
N1—Mn1—Cl390.64 (11)C12—N7—Mn2126.1 (5)
Cl1—Mn1—Cl3172.42 (5)C10—C11—N8104.1 (7)
N3—Mn1—Cl2171.84 (10)C10—C11—H11128.0
N1—Mn1—Cl295.45 (11)N8—C11—H11128.0
Cl1—Mn1—Cl285.48 (4)N1—C1—N2112.2 (4)
Cl3—Mn1—Cl289.08 (4)N1—C1—H1A123.9
N3—Mn1—Cl2i90.21 (10)N2—C1—H1A123.9
N1—Mn1—Cl2i174.19 (11)C3—C2—N1110.8 (5)
Cl1—Mn1—Cl2i89.87 (4)C3—C2—H4B124.6
Cl3—Mn1—Cl2i84.14 (4)N1—C2—H4B124.6
Cl2—Mn1—Cl2i81.95 (4)C2—C3—N2105.9 (5)
N7—Mn2—N589.13 (16)C2—C3—H3B127.0
N7—Mn2—Cl494.57 (12)N2—C3—H3B127.0
N5—Mn2—Cl494.27 (11)N3—C4—N4111.4 (4)
N7—Mn2—Cl3173.40 (12)N3—C4—H5A124.3
N5—Mn2—Cl391.82 (11)N4—C4—H5A124.3
Cl4—Mn2—Cl391.88 (4)N4—C5—C6107.0 (5)
N7—Mn2—Cl1i88.65 (12)N4—C5—H7B126.5
N5—Mn2—Cl1i173.48 (11)C6—C5—H7B126.5
Cl4—Mn2—Cl1i92.01 (4)C5—C6—N3108.8 (5)
Cl3—Mn2—Cl1i89.69 (4)C5—C6—H8A125.6
N7—Mn2—Cl2i89.40 (12)N3—C6—H8A125.6
N5—Mn2—Cl2i90.27 (11)N5—C7—N6111.2 (4)
Cl4—Mn2—Cl2i174.01 (5)N5—C7—H9A124.4
Cl3—Mn2—Cl2i84.06 (4)N6—C7—H9A124.4
Cl1i—Mn2—Cl2i83.58 (4)N6—C8—C9106.0 (5)
Mn1—Cl1—Mn2i97.01 (4)N6—C8—H11A127.0
Mn1—Cl2—Mn2i93.69 (4)C9—C8—H11A127.0
Mn1—Cl2—Mn1i98.05 (4)C8—C9—N5109.6 (5)
Mn2i—Cl2—Mn1i93.71 (4)C8—C9—H12B125.2
Mn1—Cl3—Mn297.74 (4)N5—C9—H12B125.2
C1—N1—C2104.0 (4)N7—C10—C11112.0 (8)
C1—N1—Mn1130.2 (3)N7—C10—H13A124.0
C2—N1—Mn1125.4 (4)C11—C10—H13A124.0
C1—N2—C3107.1 (4)C12—N8—C11107.9 (8)
C1—N2—H2A126.4C12—N8—H8126.1
C3—N2—H2A126.4C11—N8—H8126.1
C4—N3—C6105.2 (4)N8—C12—N7108.7 (9)
C4—N3—Mn1128.8 (3)N8—C12—H16A125.7
C6—N3—Mn1125.9 (3)N7—C12—H16A125.7
C4—N4—C5107.7 (4)C13—C14—O1125 (2)
C4—N4—H6A126.2C13—C14—H20A106.1
C5—N4—H6A126.2O1—C14—H20A106.1
C7—N5—C9105.0 (4)C13—C14—H21B106.1
C7—N5—Mn2128.7 (3)O1—C14—H21B106.1
C9—N5—Mn2125.9 (4)H20A—C14—H21B106.3
C7—N6—C8108.2 (5)
N3—Mn1—Cl1—Mn2i175.98 (10)N7—Mn2—N5—C998.3 (5)
N1—Mn1—Cl1—Mn2i91.24 (11)Cl4—Mn2—N5—C93.8 (5)
Cl2—Mn1—Cl1—Mn2i3.85 (4)Cl3—Mn2—N5—C988.3 (5)
Cl2i—Mn1—Cl1—Mn2i85.78 (4)Cl2i—Mn2—N5—C9172.3 (5)
N1—Mn1—Cl2—Mn2i90.95 (11)N5—Mn2—N7—C10110.9 (6)
Cl1—Mn1—Cl2—Mn2i3.77 (4)Cl4—Mn2—N7—C1016.7 (6)
Cl3—Mn1—Cl2—Mn2i178.49 (4)Cl1i—Mn2—N7—C1075.2 (6)
Cl2i—Mn1—Cl2—Mn2i94.28 (4)Cl2i—Mn2—N7—C10158.8 (6)
N1—Mn1—Cl2—Mn1i174.77 (11)N5—Mn2—N7—C1268.0 (5)
Cl1—Mn1—Cl2—Mn1i90.51 (4)Cl4—Mn2—N7—C12162.2 (5)
Cl3—Mn1—Cl2—Mn1i84.21 (4)Cl1i—Mn2—N7—C12105.9 (5)
Cl2i—Mn1—Cl2—Mn1i0.0Cl2i—Mn2—N7—C1222.3 (5)
N3—Mn1—Cl3—Mn285.49 (10)C2—N1—C1—N20.6 (6)
N1—Mn1—Cl3—Mn2178.08 (11)Mn1—N1—C1—N2172.4 (3)
Cl2—Mn1—Cl3—Mn286.47 (4)C3—N2—C1—N10.4 (6)
Cl2i—Mn1—Cl3—Mn24.47 (4)C1—N1—C2—C30.6 (7)
N5—Mn2—Cl3—Mn185.55 (11)Mn1—N1—C2—C3172.9 (4)
Cl4—Mn2—Cl3—Mn1179.89 (5)N1—C2—C3—N20.4 (8)
Cl1i—Mn2—Cl3—Mn188.11 (4)C1—N2—C3—C20.0 (7)
Cl2i—Mn2—Cl3—Mn14.53 (4)C6—N3—C4—N40.4 (5)
N3—Mn1—N1—C189.6 (5)Mn1—N3—C4—N4175.7 (3)
Cl1—Mn1—N1—C1177.8 (4)C5—N4—C4—N30.6 (6)
Cl3—Mn1—N1—C12.8 (4)C4—N4—C5—C60.5 (6)
Cl2—Mn1—N1—C191.9 (4)N4—C5—C6—N30.2 (6)
N3—Mn1—N1—C282.0 (5)C4—N3—C6—C50.1 (5)
Cl1—Mn1—N1—C210.5 (5)Mn1—N3—C6—C5176.2 (3)
Cl3—Mn1—N1—C2174.4 (5)C9—N5—C7—N60.8 (6)
Cl2—Mn1—N1—C296.5 (5)Mn2—N5—C7—N6171.6 (3)
N1—Mn1—N3—C4117.3 (4)C8—N6—C7—N50.7 (6)
Cl1—Mn1—N3—C422.1 (4)C7—N6—C8—C90.3 (8)
Cl3—Mn1—N3—C4151.9 (4)N6—C8—C9—N50.2 (9)
Cl2i—Mn1—N3—C467.8 (4)C7—N5—C9—C80.6 (8)
N1—Mn1—N3—C667.3 (4)Mn2—N5—C9—C8172.1 (5)
Cl1—Mn1—N3—C6162.5 (4)C12—N7—C10—C112.1 (9)
Cl3—Mn1—N3—C623.4 (4)Mn2—N7—C10—C11178.9 (5)
Cl2i—Mn1—N3—C6107.6 (4)N8—C11—C10—N71.7 (10)
N7—Mn2—N5—C772.7 (4)C10—C11—N8—C120.6 (10)
Cl4—Mn2—N5—C7167.2 (4)C11—N8—C12—N70.6 (9)
Cl3—Mn2—N5—C7100.8 (4)C10—N7—C12—N81.6 (9)
Cl2i—Mn2—N5—C716.7 (4)Mn2—N7—C12—N8179.3 (5)
Symmetry codes: (i) −x, −y, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1ii0.882.092.865 (15)147.
N4—H6A···Cl3iii0.882.493.289 (4)152.
N6—H10A···Cl4iii0.882.483.247 (4)146.
N2—H2A···Cl4iv0.882.553.292 (4)143.
Symmetry codes: (ii) x, y−1, z; (iii) x+1, y, z; (iv) −x, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1i0.882.092.865 (15)147.
N4—H6A···Cl3ii0.882.493.289 (4)152.
N6—H10A···Cl4ii0.882.483.247 (4)146.
N2—H2A···Cl4iii0.882.553.292 (4)143.
Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z; (iii) −x, −y+1, −z+1.
Acknowledgements top

MAK thanks Bayero University, Kano, Nigeria for funding.

references
References top

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flook, R. J., Freeman, H. C., Huq, F. & Rosalky, J. M. (1973). Acta Cryst. B29, 903–906.

Lee, C.-J., Wei, H.-H., Lee, G.-H. & Wang, Y. (2000). Inorg. Chem. Commun. 3, 690–693.

Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.