organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butyl 2-(3-benzoyl­thio­ureido)acetate

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 10 October 2008; accepted 15 October 2008; online 22 October 2008)

In the title compound, C14H18N2O3S, the butyl acetate fragment and the benzoyl group adopt a cis–trans configuration, respectively, with respect to the thiono S atom across the C—N bonds. In the crystal packing, the mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds to form a one-dimensional chain along the c axis. The terminal butyl C atom is disordered with occupancies 0.82 (2)and 0.18 (2).

Related literature

For information on bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); For related structures, see: Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.]); Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]); Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O3S

  • Mr = 294.36

  • Monoclinic, P 21 /c

  • a = 14.051 (3) Å

  • b = 7.9482 (18) Å

  • c = 14.116 (3) Å

  • β = 102.753 (3)°

  • V = 1537.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.46 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.906, Tmax = 0.947

  • 7933 measured reflections

  • 2853 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.136

  • S = 1.03

  • 2853 reflections

  • 187 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.39 3.203 (2) 158
N2—H2A⋯O1 0.86 1.96 2.631 (2) 134
C2—H2⋯O1i 0.93 2.53 3.328 (3) 144
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound (I) is a thiourea derivative of glycine analogous to ethyl-2-(3-benzoylthioureido)acetate (II) (Hassan et al., 2008a) and propyl-2-(3-benzoylthioureido)acetate (III) (Hassan et al., 2008b), with the shorter alkyl groups replaced by a butyl group. The molecule maintains the same cis–trans configuration with respect to the positions of the butyl acetate and benzoyl groups, relative to the S atom across the C—N bonds (Fig. 1 and Fig. 2), respectively. There is a disorder in the molecules involving the terminal butyl carbon atom. 'Soft' restrains, SIMU and EADP, were applied to the disorder components, C14 and C14', to resolve the overlapping components. In the final refinement the main disorder component, C14, resides in about 80% occupancy whereas the minor component, C14', occupies 20% at a time.

The compound was synthesized by a similar procedure to that of reported in (II). The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987) and comparable to those in II and III. The phenyl ring, (C1–C6), and the central fragment, (C6/C7/C8/C9/N1/N2/S1), are essentially planar and the dihedral angle between them is 27.82 (9)°. In the butyl fragment, (C11/C12/C13/O3), the maximum deviation from the mean plane is 0.017 (3)Å for the atom C12. The dihedral angle between the phenyl ring and the butyl group is 14.5 (3)°. The intramolecular N2—H2···O1 and C9—H9B···S1 hydrogen bonds, (Table 1), force the molecule to adopt the present molecular conformation. The intermolecular N1—H1B···O2 and C2—H4A···O1 hydrogen bonds, (Table 2), link the molecules into a chain parallel to the c axis (Fig. 3).

Related literature top

For information on bond lengths, see: Allen et al. (1987); For related literature on analogous molecules, see: Hassan et al. (2008a,b). For related structures, refer to: Yamin & Hassan (2004); Yamin & Yusof (2003).

Experimental top

Preparation of the compound was carried out according to a previously reported experimental procedures (Hassan et al., 2008a). A yellowish crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from CH2Cl2 solution at room temperature (yield 75%).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with, Uiso =1.2Ueq (N) for NH 0.86 Å, Uiso=1.2Ueq (C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å and Uiso = 1.5Ueq (C) for CH3 0.96 Å. The disordered component of the butyl group, C14 and C14', was resolved by applying SIMU and EADP constrains and refined anisotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the main (80% occupancy) disorder component of the butyl terminal carbon atom, with displacement ellipsods are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (I) showing the minor (20% occupancy) disorder component of the butyl terminal carbon atom, with displacement ellipsods are drawn at the 50% probability level.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the a axis. Hydrogen bonds are drawn as dashed lines.
Butyl 2-(3-benzoylthioureido)acetate top
Crystal data top
C14H18N2O3SF(000) = 624
Mr = 294.36Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2213 reflections
a = 14.051 (3) Åθ = 3.0–25.5°
b = 7.9482 (18) ŵ = 0.22 mm1
c = 14.116 (3) ÅT = 298 K
β = 102.753 (3)°Block, colourless
V = 1537.5 (6) Å30.46 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2853 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1715
Tmin = 0.906, Tmax = 0.947k = 99
7933 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.3732P]
where P = (Fo2 + 2Fc2)/3
2853 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.24 e Å3
6 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H18N2O3SV = 1537.5 (6) Å3
Mr = 294.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.051 (3) ŵ = 0.22 mm1
b = 7.9482 (18) ÅT = 298 K
c = 14.116 (3) Å0.46 × 0.28 × 0.25 mm
β = 102.753 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2853 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2098 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.947Rint = 0.022
7933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0496 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2853 reflectionsΔρmin = 0.27 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C50.38240 (15)0.4009 (3)0.51713 (17)0.0528 (6)
H50.37850.40570.45060.063*
C40.31404 (17)0.4833 (3)0.55659 (18)0.0588 (6)
H40.26450.54450.51670.071*
C30.31902 (17)0.4750 (3)0.65504 (18)0.0606 (6)
H30.27300.53120.68160.073*
C20.39148 (17)0.3842 (3)0.71373 (17)0.0626 (7)
H20.39360.37680.77990.075*
C10.46139 (16)0.3037 (3)0.67530 (16)0.0545 (6)
H10.51140.24450.71580.065*
C60.45697 (14)0.3111 (3)0.57640 (15)0.0460 (5)
C70.52769 (15)0.2248 (3)0.52830 (15)0.0480 (5)
C80.69838 (15)0.1216 (3)0.55880 (15)0.0477 (5)
C90.75837 (16)0.0258 (3)0.43410 (16)0.0563 (6)
H9A0.75470.14380.45030.068*
H9B0.82200.01550.46710.068*
C100.74863 (17)0.0094 (3)0.32743 (17)0.0526 (5)
C110.82911 (19)0.0919 (4)0.20303 (18)0.0751 (8)
H11A0.81970.02140.17710.090*
H11B0.77970.16410.16450.090*
C120.92815 (19)0.1537 (4)0.1994 (2)0.0751 (8)
H12A0.93530.26860.22310.090*
H12B0.97650.08550.24240.090*
C130.9475 (2)0.1483 (5)0.0995 (2)0.0897 (9)
H13A0.92170.24840.06370.108*
H13B0.91610.05070.06480.108*
C14'1.050 (2)0.139 (7)0.108 (2)0.111 (3)0.18 (2)
H14E1.07270.02820.12880.166*0.18 (2)
H14F1.06520.16330.04660.166*0.18 (2)
H14D1.08190.21990.15540.166*0.18 (2)
C141.0392 (5)0.2373 (17)0.0885 (5)0.111 (3)0.82 (2)
H14B1.04560.22860.02230.166*0.82 (2)
H14A1.03560.35370.10550.166*0.82 (2)
H14C1.09470.18620.13060.166*0.82 (2)
S10.80227 (5)0.10476 (11)0.64102 (5)0.0744 (3)
O10.50502 (11)0.1805 (2)0.44383 (11)0.0647 (5)
O20.68594 (12)0.0656 (2)0.27269 (13)0.0709 (5)
O30.82116 (12)0.0935 (2)0.30338 (11)0.0648 (5)
N10.61986 (12)0.2016 (2)0.58446 (12)0.0492 (5)
H1A0.63020.24130.64250.059*
N20.68439 (13)0.0652 (2)0.46870 (13)0.0517 (5)
H2A0.62920.08350.42950.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0497 (12)0.0591 (14)0.0492 (13)0.0022 (11)0.0100 (10)0.0037 (11)
C40.0504 (13)0.0584 (15)0.0658 (15)0.0052 (11)0.0090 (11)0.0063 (12)
C30.0552 (14)0.0631 (16)0.0670 (16)0.0002 (11)0.0209 (12)0.0101 (12)
C20.0611 (15)0.0801 (18)0.0481 (13)0.0007 (13)0.0154 (11)0.0050 (12)
C10.0499 (12)0.0630 (15)0.0481 (13)0.0003 (11)0.0057 (10)0.0024 (11)
C60.0421 (11)0.0488 (12)0.0463 (12)0.0056 (9)0.0077 (9)0.0015 (10)
C70.0460 (12)0.0511 (13)0.0459 (12)0.0034 (10)0.0076 (9)0.0015 (10)
C80.0470 (12)0.0481 (13)0.0495 (13)0.0026 (10)0.0137 (10)0.0069 (10)
C90.0539 (13)0.0606 (15)0.0566 (14)0.0078 (11)0.0171 (11)0.0027 (11)
C100.0485 (12)0.0540 (14)0.0575 (14)0.0006 (11)0.0162 (11)0.0009 (11)
C110.0707 (17)0.101 (2)0.0565 (15)0.0157 (15)0.0201 (13)0.0033 (14)
C120.0645 (16)0.092 (2)0.0718 (17)0.0078 (14)0.0222 (13)0.0051 (15)
C130.087 (2)0.110 (2)0.0789 (19)0.0225 (18)0.0322 (16)0.0006 (17)
C14'0.104 (3)0.147 (7)0.093 (3)0.051 (4)0.048 (3)0.010 (4)
C140.104 (3)0.147 (7)0.093 (3)0.051 (4)0.048 (3)0.010 (4)
S10.0534 (4)0.1112 (6)0.0549 (4)0.0174 (4)0.0040 (3)0.0017 (4)
O10.0538 (9)0.0881 (12)0.0482 (10)0.0065 (9)0.0030 (7)0.0130 (9)
O20.0631 (11)0.0901 (13)0.0620 (11)0.0204 (10)0.0188 (9)0.0141 (9)
O30.0613 (10)0.0803 (12)0.0557 (10)0.0175 (9)0.0195 (8)0.0007 (8)
N10.0449 (10)0.0609 (12)0.0418 (9)0.0013 (9)0.0096 (7)0.0019 (8)
N20.0454 (10)0.0605 (12)0.0494 (11)0.0029 (9)0.0109 (8)0.0034 (9)
Geometric parameters (Å, º) top
C5—C41.377 (3)C10—O21.195 (3)
C5—C61.386 (3)C10—O31.324 (3)
C5—H50.9300C11—O31.445 (3)
C4—C31.378 (3)C11—C121.487 (4)
C4—H40.9300C11—H11A0.9700
C3—C21.368 (3)C11—H11B0.9700
C3—H30.9300C12—C131.494 (4)
C2—C11.380 (3)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C1—C61.385 (3)C13—C14'1.42 (3)
C1—H10.9300C13—C141.507 (7)
C6—C71.489 (3)C13—H13A0.9700
C7—O11.216 (2)C13—H13B0.9700
C7—N11.373 (3)C14'—H14E0.9600
C8—N21.322 (3)C14'—H14F0.9600
C8—N11.389 (3)C14'—H14D0.9600
C8—S11.658 (2)C14—H14B0.9600
C9—N21.437 (3)C14—H14A0.9600
C9—C101.487 (3)C14—H14C0.9600
C9—H9A0.9700N1—H1A0.8600
C9—H9B0.9700N2—H2A0.8600
C4—C5—C6120.2 (2)O3—C11—H11B110.1
C4—C5—H5119.9C12—C11—H11B110.1
C6—C5—H5119.9H11A—C11—H11B108.5
C5—C4—C3120.0 (2)C11—C12—C13112.9 (2)
C5—C4—H4120.0C11—C12—H12A109.0
C3—C4—H4120.0C13—C12—H12A109.0
C2—C3—C4120.1 (2)C11—C12—H12B109.0
C2—C3—H3120.0C13—C12—H12B109.0
C4—C3—H3120.0H12A—C12—H12B107.8
C3—C2—C1120.4 (2)C14'—C13—C12108.2 (12)
C3—C2—H2119.8C14'—C13—C1432.8 (19)
C1—C2—H2119.8C12—C13—C14115.0 (3)
C2—C1—C6119.9 (2)C14'—C13—H13A110.1
C2—C1—H1120.0C12—C13—H13A110.1
C6—C1—H1120.0C14—C13—H13A77.9
C1—C6—C5119.4 (2)C14'—C13—H13B110.1
C1—C6—C7123.66 (19)C12—C13—H13B110.1
C5—C6—C7116.99 (19)C14—C13—H13B128.8
O1—C7—N1122.4 (2)H13A—C13—H13B108.4
O1—C7—C6121.58 (19)C13—C14'—H14E109.5
N1—C7—C6115.97 (18)C13—C14'—H14F109.5
N2—C8—N1116.64 (19)C13—C14'—H14D109.5
N2—C8—S1124.56 (17)C13—C14—H14B109.5
N1—C8—S1118.80 (16)C13—C14—H14A109.5
N2—C9—C10112.83 (19)H14B—C14—H14A109.5
N2—C9—H9A109.0C13—C14—H14C109.5
C10—C9—H9A109.0H14B—C14—H14C109.5
N2—C9—H9B109.0H14A—C14—H14C109.5
C10—C9—H9B109.0C10—O3—C11118.49 (19)
H9A—C9—H9B107.8C7—N1—C8127.81 (18)
O2—C10—O3125.8 (2)C7—N1—H1A116.1
O2—C10—C9126.0 (2)C8—N1—H1A116.1
O3—C10—C9108.1 (2)C8—N2—C9122.18 (19)
O3—C11—C12107.8 (2)C8—N2—H2A118.9
O3—C11—H11A110.1C9—N2—H2A118.9
C12—C11—H11A110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.393.203 (2)158
N2—H2A···O10.861.962.631 (2)134
C2—H2···O1i0.932.533.328 (3)144
C9—H9B···S10.972.633.032 (2)105
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H18N2O3S
Mr294.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.051 (3), 7.9482 (18), 14.116 (3)
β (°) 102.753 (3)
V3)1537.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.46 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.906, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
7933, 2853, 2098
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.136, 1.03
No. of reflections2853
No. of parameters187
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.86002.39003.203 (2)158.00
N2—H2A···O10.86001.96002.631 (2)134.00
C2—H2···O1i0.93002.53003.328 (3)144.00
C9—H9B···S10.97002.63003.032 (2)105.00
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing the facilities and the Ministry of Science, Technology and Innovation for the research fund No. UKM-ST-01FRGS0016–2006.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds