organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­methyl-N-propyl­propan-1-aminium chloride monohydrate

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40014 JY, Finland
*Correspondence e-mail: manu.lahtinen@jyu.fi

(Received 1 October 2008; accepted 7 October 2008; online 11 October 2008)

The title compound, C8H20N+·Cl·H2O, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water mol­ecules, which inter­act via O—H⋯Cl hydrogen bonds [O⋯Cl = 3.285 (3) and 3.239 (3) Å] to form helical chains. The cations are involved in weak inter­molecular C—H⋯Cl and C—H⋯O hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.

Related literature

For general background, see: Ropponen et al. (2004[Ropponen, J., Lahtinen, M., Busi, S., Nissinen, M., Kolehmainen, E. & Rissanen, K. (2004). New J. Chem. 28, 1426-1430.]). For related structures, see: Busi et al. (2005[Busi, S., Lahtinen, M., Mansikkamäki, H., Valkonen, J. & Rissanen, K. (2005). J. Solid State Chem. 178, 1722-1737.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N+·Cl·H2O

  • Mr = 183.72

  • Monoclinic, P 21 /n

  • a = 7.9870 (16) Å

  • b = 9.4210 (19) Å

  • c = 14.875 (3) Å

  • β = 100.23 (3)°

  • V = 1101.5 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.71 mm−1

  • T = 173 (2) K

  • 0.40 × 0.12 × 0.12 mm

Data collection
  • Nonius Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.534, Tmax = 0.737

  • 6471 measured reflections

  • 1784 independent reflections

  • 1474 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.04

  • 1784 reflections

  • 112 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl1 0.79 (4) 2.47 (4) 3.239 (3) 164 (3)
O1Wi—H2Wi⋯Cl1 0.84 (4) 2.46 (4) 3.285 (3) 172 (4)
C31ii—H5Bii⋯O1W 0.98 2.54 3.489 (4) 162
C21ii—H4Aii⋯Cl1 0.99 2.76 3.742 (2) 172
C41iii—H7Aiii⋯Cl1 0.98 2.80 3.721 (3) 156
C41—H7C⋯Cl1 0.98 2.76 3.691 (3) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]); data reduction: DENZO–SMN; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of small R2R'2N+ X--type quaternary ammonium halides (Ropponen et al., 2004; Busi et al., 2005) the title compound (Fig. 1) has been synthesized and its crystal structure is reported here.

The asymmetric unit consists of one cation and one anion with one water molecule. The intermolecular (O)H···Cl distances vary from 2.456 (41) to 2.477 (40) Å. The shortest intermolecular (C)H···Cl distance is 2.779 (1) Å and the shortest (C)H···O distance is 2.561 (3) Å. The packing is affected by these weak intermolecular bonds (Table 1) causing the cations to arrange in layers which are separated by anions and the water molecules. The anions and the water molecules form a hydrogen-bonded chain along the crystallographic b-axis.

Related literature top

For general background, see: Ropponen et al. (2004). For related structures, see: Busi et al. (2005).

Experimental top

The mixture of 1-bromopropane (95.2 mmol) and dimethylformamide (0.47 mol) in the presence of potassiumcarbonate (95.2 mmol) was stirred at 70°C for 72 h. The reaction mixture was cooled and filtered and the filtrate was evaporated. The product (white powder) was washed with diethyl ether and recrystallized from dichloromethane and dried in vacuo. The anion exhange was performed in a suitable resin, resulting in a light yellow, hygroscopic final product.

Refinement top

The water H atoms were located from the difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.98–0.99 Å and with Uĩso~(H) = 1.2 (1.5 for methyl groups) times U~eq~(C).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003); data reduction: DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1) showing the atomic numbering and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (1) viewed along the crystallographic b-axis. Dashed lines indicate hydrogen bonds. The helical structure of the network between the anions and the water molecules can be seen. The H atoms not involved in the network have been omitted for clarity, as well as some of the cations.
N,N-Dimethyl-N-propylpropan-1-aminium chloride monohydrate top
Crystal data top
C8H20N+·Cl·H2OF(000) = 408
Mr = 183.72Dx = 1.108 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 7.9870 (16) ÅCell parameters from 1705 reflections
b = 9.4210 (19) Åθ = 0.9–63.7°
c = 14.875 (3) ŵ = 2.71 mm1
β = 100.23 (3)°T = 173 K
V = 1101.5 (4) Å3Rod, colourless
Z = 40.40 × 0.12 × 0.12 mm
Data collection top
Nonius Kappa APEXII
diffractometer
1784 independent reflections
Radiation source: fine-focus sealed tube1474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 63.4°, θmin = 5.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 79
Tmin = 0.534, Tmax = 0.737k = 1010
6471 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2799P]
where P = (Fo2 + 2Fc2)/3
1784 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H20N+·Cl·H2OV = 1101.5 (4) Å3
Mr = 183.72Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.9870 (16) ŵ = 2.71 mm1
b = 9.4210 (19) ÅT = 173 K
c = 14.875 (3) Å0.40 × 0.12 × 0.12 mm
β = 100.23 (3)°
Data collection top
Nonius Kappa APEXII
diffractometer
1784 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1474 reflections with I > 2σ(I)
Tmin = 0.534, Tmax = 0.737Rint = 0.056
6471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
1784 reflectionsΔρmin = 0.21 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33660 (7)0.05079 (6)0.66252 (4)0.0363 (2)
N10.7874 (2)0.10789 (19)0.61585 (11)0.0244 (4)
O1W0.0649 (3)0.2974 (3)0.68554 (19)0.0673 (7)
C210.9430 (2)0.1617 (2)0.58112 (14)0.0272 (5)
H4A1.04160.10230.60770.033*
H4B0.92430.14890.51400.033*
C310.7647 (3)0.0457 (2)0.59034 (16)0.0311 (5)
H5A0.66590.08360.61310.047*
H5B0.86680.09870.61750.047*
H5C0.74660.05510.52370.047*
C130.9427 (3)0.0851 (3)0.87601 (15)0.0366 (6)
H6A0.96570.18660.88630.055*
H6B1.03030.02950.91530.055*
H6C0.83080.06220.89050.055*
C410.6317 (3)0.1857 (3)0.56898 (16)0.0333 (5)
H7A0.62360.17830.50260.050*
H7B0.63990.28590.58700.050*
H7C0.53020.14370.58680.050*
C110.7990 (2)0.1267 (2)0.71770 (13)0.0269 (5)
H8A0.69110.09360.73460.032*
H8B0.80970.22940.73190.032*
C120.9448 (3)0.0497 (3)0.77691 (15)0.0319 (5)
H9A0.93230.05400.76720.038*
H9B1.05420.07960.76040.038*
C220.9876 (3)0.3154 (2)0.60251 (17)0.0360 (6)
H10A1.00770.33010.66950.043*
H10B0.89150.37680.57490.043*
C231.1457 (3)0.3563 (3)0.5653 (2)0.0497 (7)
H11A1.24080.29560.59290.074*
H11B1.17390.45580.58020.074*
H11C1.12470.34380.49890.074*
H1W0.141 (4)0.250 (4)0.675 (2)0.065 (11)*
H2W0.100 (4)0.360 (4)0.724 (3)0.084 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0368 (3)0.0399 (4)0.0335 (3)0.0034 (2)0.0099 (2)0.0041 (2)
N10.0251 (9)0.0244 (10)0.0234 (9)0.0008 (7)0.0037 (7)0.0005 (7)
O1W0.0431 (12)0.0528 (15)0.1006 (19)0.0032 (11)0.0020 (12)0.0265 (13)
C210.0270 (11)0.0327 (13)0.0226 (11)0.0014 (9)0.0067 (8)0.0011 (9)
C310.0359 (12)0.0241 (12)0.0326 (12)0.0012 (9)0.0038 (9)0.0041 (9)
C130.0479 (14)0.0344 (14)0.0265 (12)0.0043 (11)0.0038 (10)0.0001 (10)
C410.0264 (11)0.0375 (14)0.0333 (13)0.0071 (10)0.0020 (9)0.0037 (10)
C110.0281 (11)0.0305 (13)0.0232 (11)0.0028 (9)0.0074 (8)0.0002 (9)
C120.0321 (11)0.0384 (14)0.0251 (12)0.0046 (10)0.0047 (9)0.0023 (10)
C220.0391 (12)0.0319 (14)0.0390 (14)0.0060 (10)0.0122 (10)0.0033 (10)
C230.0465 (14)0.0420 (16)0.0639 (18)0.0122 (12)0.0192 (13)0.0043 (13)
Geometric parameters (Å, º) top
N1—C311.499 (3)C13—H6C0.9800
N1—C411.504 (3)C41—H7A0.9800
N1—C111.512 (3)C41—H7B0.9800
N1—C211.515 (3)C41—H7C0.9800
O1W—H1W0.79 (4)C11—C121.514 (3)
O1W—H2W0.84 (4)C11—H8A0.9900
C21—C221.512 (3)C11—H8B0.9900
C21—H4A0.9900C12—H9A0.9900
C21—H4B0.9900C12—H9B0.9900
C31—H5A0.9800C22—C231.516 (3)
C31—H5B0.9800C22—H10A0.9900
C31—H5C0.9800C22—H10B0.9900
C13—C121.514 (3)C23—H11A0.9800
C13—H6A0.9800C23—H11B0.9800
C13—H6B0.9800C23—H11C0.9800
C31—N1—C41107.48 (16)N1—C41—H7C109.5
C31—N1—C11110.50 (16)H7A—C41—H7C109.5
C41—N1—C11107.79 (16)H7B—C41—H7C109.5
C31—N1—C21107.86 (15)N1—C11—C12115.50 (16)
C41—N1—C21109.83 (16)N1—C11—H8A108.4
C11—N1—C21113.22 (15)C12—C11—H8A108.4
H1W—O1W—H2W110 (3)N1—C11—H8B108.4
C22—C21—N1115.22 (17)C12—C11—H8B108.4
C22—C21—H4A108.5H8A—C11—H8B107.5
N1—C21—H4A108.5C13—C12—C11108.70 (18)
C22—C21—H4B108.5C13—C12—H9A109.9
N1—C21—H4B108.5C11—C12—H9A109.9
H4A—C21—H4B107.5C13—C12—H9B109.9
N1—C31—H5A109.5C11—C12—H9B109.9
N1—C31—H5B109.5H9A—C12—H9B108.3
H5A—C31—H5B109.5C21—C22—C23110.3 (2)
N1—C31—H5C109.5C21—C22—H10A109.6
H5A—C31—H5C109.5C23—C22—H10A109.6
H5B—C31—H5C109.5C21—C22—H10B109.6
C12—C13—H6A109.5C23—C22—H10B109.6
C12—C13—H6B109.5H10A—C22—H10B108.1
H6A—C13—H6B109.5C22—C23—H11A109.5
C12—C13—H6C109.5C22—C23—H11B109.5
H6A—C13—H6C109.5H11A—C23—H11B109.5
H6B—C13—H6C109.5C22—C23—H11C109.5
N1—C41—H7A109.5H11A—C23—H11C109.5
N1—C41—H7B109.5H11B—C23—H11C109.5
H7A—C41—H7B109.5
C31—N1—C21—C22178.85 (18)C41—N1—C11—C12177.38 (18)
C41—N1—C21—C2264.3 (2)C21—N1—C11—C1260.9 (2)
C11—N1—C21—C2256.3 (2)N1—C11—C12—C13177.40 (18)
C31—N1—C11—C1260.2 (2)N1—C21—C22—C23179.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl10.79 (4)2.47 (4)3.239 (3)164 (3)
O1Wi—H2Wi···Cl10.84 (4)2.46 (4)3.285 (3)172 (4)
C31ii—H5Bii···O1W0.982.543.489 (4)162
C21ii—H4Aii···Cl10.992.763.742 (2)172
C41iii—H7Aiii···Cl10.982.803.721 (3)156
C41—H7C···Cl10.982.763.691 (3)158
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H20N+·Cl·H2O
Mr183.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.9870 (16), 9.4210 (19), 14.875 (3)
β (°) 100.23 (3)
V3)1101.5 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.71
Crystal size (mm)0.40 × 0.12 × 0.12
Data collection
DiffractometerNonius Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.534, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
6471, 1784, 1474
Rint0.056
(sin θ/λ)max1)0.580
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.04
No. of reflections1784
No. of parameters112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl10.79 (4)2.47 (4)3.239 (3)164 (3)
O1Wi—H2Wi···Cl10.84 (4)2.46 (4)3.285 (3)172 (4)
C31ii—H5Bii···O1W0.982.5423.489 (4)162.31
C21ii—H4Aii···Cl10.992.7593.742 (2)172.27
C41iii—H7Aiii···Cl10.982.8033.721 (3)156.29
C41—H7C···Cl10.982.7633.691 (3)158.07
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Inorganic Materials Chemistry Graduate Program for financial support.

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationBusi, S., Lahtinen, M., Mansikkamäki, H., Valkonen, J. & Rissanen, K. (2005). J. Solid State Chem. 178, 1722–1737.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRopponen, J., Lahtinen, M., Busi, S., Nissinen, M., Kolehmainen, E. & Rissanen, K. (2004). New J. Chem. 28, 1426–1430.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds