organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(But-2-enyl­­idene)­iso­nicotino­hydrazide

aKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: yinck@263.net

(Received 10 October 2008; accepted 13 October 2008; online 22 October 2008)

In the title Schiff base compound, C10H11N3O, the pyridine ring is twisted with respect to the mean plane containing the hydrazine chain, making a dihedral angle of 31.40 (9)°. The NH group inter­acts with the N atom of the pyridine ring through N—H⋯N hydrogen bonds to build up a zigzag chain developing parallel to the ([\overline{1}]01) plane.

Related literature

For general background, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O

  • Mr = 189.22

  • Monoclinic, C c

  • a = 9.5779 (8) Å

  • b = 12.6191 (11) Å

  • c = 9.2095 (8) Å

  • β = 113.511 (1)°

  • V = 1020.70 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.974

  • 4639 measured reflections

  • 1264 independent reflections

  • 1225 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.08

  • 1264 reflections

  • 128 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.86 2.17 2.991 (2) 160
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes(Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the study of the coordination chemistry of Schiff bases, we have synthesized the title compound (I) and reported its cyrstal structure.

In the title compound. the pyridine ring is twisted with respect to the mean plane containing the hydrazine chain making a dihedral angle of 31.40 (9)° (Fig. 1). The NH interacts with the nitrogen atom of the pyridine ring through N-H···N hydrogen bond to build up a zig-zag chain developing parallel to the (-1 0 1) plane (Table 1, Fig. 2).

Related literature top

For general background, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

Pyridine-4-carboxylic acid hydrazide (1 mmol, 0.137 g) was dissolved in anhydrous methanol, H2SO4 (98% 0.5 ml) was added to this, the mixture was stirred for several minitutes at 351 K, 3,4-dichlorobenzyaldehyde (1 mmol 0.070 g) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized in dichloromethane, brown single crystals of (I) was obtained after 5 d.

Refinement top

H atoms were placed in calculated position and treated as riding with C—H= 0.93Å (aromatic), 0.96Å(methyl) and N-H= 0.86\%A with Uiso(H)=1.2Ueq(C,N) or Uiso(H)=1.5Ueq(methyl).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of the zig-zag chain through N-H···N hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.[Symmetry code: (i) x-1/2, -y+3/2, z-1/2]
N'-(But-2-enylidene)isonicotinohydrazide top
Crystal data top
C10H11N3OF(000) = 400
Mr = 189.22Dx = 1.231 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2994 reflections
a = 9.5779 (8) Åθ = 2.4–23.8°
b = 12.6191 (11) ŵ = 0.08 mm1
c = 9.2095 (8) ÅT = 293 K
β = 113.511 (1)°Block, brown
V = 1020.70 (15) Å30.25 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1264 independent reflections
Radiation source: fine-focus sealed tube1225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.969, Tmax = 0.974k = 1616
4639 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.0728P]
where P = (Fo2 + 2Fc2)/3
1264 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.12 e Å3
Crystal data top
C10H11N3OV = 1020.70 (15) Å3
Mr = 189.22Z = 4
Monoclinic, CcMo Kα radiation
a = 9.5779 (8) ŵ = 0.08 mm1
b = 12.6191 (11) ÅT = 293 K
c = 9.2095 (8) Å0.25 × 0.23 × 0.18 mm
β = 113.511 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1264 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1225 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.974Rint = 0.012
4639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.08Δρmax = 0.21 e Å3
1264 reflectionsΔρmin = 0.12 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12133 (17)1.06196 (12)0.79852 (17)0.0441 (3)
N20.21940 (16)0.98057 (11)0.87720 (16)0.0398 (3)
H20.21260.92000.83220.048*
N30.6220 (2)0.73212 (13)1.2278 (2)0.0512 (4)
O10.33989 (17)1.07888 (10)1.10035 (17)0.0542 (4)
C10.2651 (3)1.1633 (3)0.2819 (3)0.0800 (8)
H1A0.26431.23130.32920.120*
H1B0.36611.13440.24310.120*
H1C0.23371.17120.19570.120*
C20.1590 (3)1.0910 (2)0.4019 (3)0.0625 (5)
H2A0.15141.02220.36960.075*
C30.0728 (2)1.11582 (19)0.5528 (2)0.0546 (5)
H30.08191.18240.59130.066*
C40.0338 (2)1.04042 (16)0.6560 (2)0.0475 (4)
H40.03880.97320.61700.057*
C50.32562 (18)0.99674 (12)1.02479 (18)0.0366 (3)
C60.42972 (17)0.90326 (12)1.09198 (17)0.0362 (3)
C70.4905 (3)0.88762 (17)1.2543 (2)0.0529 (5)
H70.46960.93471.32080.064*
C80.5828 (3)0.80039 (19)1.3153 (2)0.0584 (5)
H80.61980.78871.42390.070*
C90.5679 (2)0.75022 (15)1.0721 (2)0.0477 (4)
H90.59650.70461.00960.057*
C100.47069 (19)0.83399 (13)0.99866 (19)0.0411 (3)
H100.43410.84330.88960.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0439 (8)0.0368 (7)0.0431 (8)0.0086 (6)0.0081 (6)0.0041 (6)
N20.0428 (7)0.0303 (6)0.0381 (7)0.0045 (5)0.0075 (5)0.0011 (5)
N30.0596 (9)0.0426 (8)0.0425 (8)0.0149 (7)0.0108 (7)0.0071 (6)
O10.0604 (8)0.0401 (7)0.0468 (7)0.0119 (6)0.0055 (6)0.0113 (5)
C10.0650 (15)0.099 (2)0.0570 (13)0.0146 (14)0.0046 (11)0.0212 (14)
C20.0564 (11)0.0683 (14)0.0532 (12)0.0083 (10)0.0116 (9)0.0077 (10)
C30.0481 (9)0.0564 (11)0.0491 (10)0.0114 (8)0.0086 (8)0.0117 (8)
C40.0453 (9)0.0441 (9)0.0445 (9)0.0048 (7)0.0088 (7)0.0027 (7)
C50.0387 (7)0.0320 (7)0.0351 (7)0.0046 (5)0.0104 (6)0.0001 (5)
C60.0381 (7)0.0322 (7)0.0338 (7)0.0025 (5)0.0096 (6)0.0003 (6)
C70.0662 (12)0.0525 (11)0.0334 (8)0.0194 (9)0.0128 (8)0.0008 (7)
C80.0720 (12)0.0601 (12)0.0334 (8)0.0204 (10)0.0108 (8)0.0074 (8)
C90.0585 (10)0.0395 (8)0.0423 (8)0.0146 (7)0.0173 (8)0.0013 (6)
C100.0494 (8)0.0366 (8)0.0332 (7)0.0088 (6)0.0122 (6)0.0014 (6)
Geometric parameters (Å, º) top
N1—C41.273 (2)C3—C41.441 (3)
N1—N21.3853 (18)C3—H30.9300
N2—C51.349 (2)C4—H40.9300
N2—H20.8600C5—C61.509 (2)
N3—C81.332 (3)C6—C71.385 (2)
N3—C91.335 (2)C6—C101.388 (2)
O1—C51.225 (2)C7—C81.383 (3)
C1—C21.480 (3)C7—H70.9300
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—C101.392 (2)
C1—H1C0.9600C9—H90.9300
C2—C31.340 (3)C10—H100.9300
C2—H2A0.9300
C4—N1—N2114.28 (15)C3—C4—H4118.6
C5—N2—N1119.75 (13)O1—C5—N2124.64 (15)
C5—N2—H2120.1O1—C5—C6121.51 (15)
N1—N2—H2120.1N2—C5—C6113.84 (13)
C8—N3—C9117.17 (16)C7—C6—C10118.54 (14)
C2—C1—H1A109.5C7—C6—C5118.58 (14)
C2—C1—H1B109.5C10—C6—C5122.85 (14)
H1A—C1—H1B109.5C8—C7—C6118.48 (16)
C2—C1—H1C109.5C8—C7—H7120.8
H1A—C1—H1C109.5C6—C7—H7120.8
H1B—C1—H1C109.5N3—C8—C7123.92 (17)
C3—C2—C1125.9 (2)N3—C8—H8118.0
C3—C2—H2A117.1C7—C8—H8118.0
C1—C2—H2A117.1N3—C9—C10123.32 (16)
C2—C3—C4120.8 (2)N3—C9—H9118.3
C2—C3—H3119.6C10—C9—H9118.3
C4—C3—H3119.6C6—C10—C9118.48 (15)
N1—C4—C3122.76 (18)C6—C10—H10120.8
N1—C4—H4118.6C9—C10—H10120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.172.991 (2)160
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H11N3O
Mr189.22
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)9.5779 (8), 12.6191 (11), 9.2095 (8)
β (°) 113.511 (1)
V3)1020.70 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.969, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
4639, 1264, 1225
Rint0.012
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.08
No. of reflections1264
No. of parameters128
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.12

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003)..

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.172.991 (2)160.3
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors express their deep appreciation to the Outstanding Youth Fund for Henan Natural Scientific Research (grant No. 0512001100) and the Fund for Scientific and Technical Emphasis (grant No. 072102270006)

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds