supplementary materials


Acta Cryst. (2008). E64, o2449    [ doi:10.1107/S1600536808038944 ]

3-(4-Pyridyl)-4,5-dihydro-1H-benzo[g]indazole

X. Xiao, Y.-Q. Zhang, S.-F. Xue, Q.-J. Zhu and Z. Tao

Abstract top

In the molecular structure of the title compound, C16H13N3, the cyclohexa-1,3-diene ring displays a screw-boat conformation and the pyridine ring is twisted by a dihedral angle of 29.13 (9)° with respect to the pyrazole ring. Molecules are linked into a supramolecular structure by N-H...N hydrogen bonding.

Comment top

Indazole derivatives exhibit variety of pharmacological properties such as anti-inflammatory (Bistochi et al., 1981), antitumor (Keppler et al., 1994), anti-HIV (Sun et al., 1997) and analgesic (Gomtsyan et al., 2008). Herein we present the crystal structure of the title indazole derivative.

The crystal structure of the title compound is represented in Fig. 1. the C10-containing cyclohexa-1,3-diene ring displays a screw-boat conformation, and the pyridine ring is twisted to pyrazole ring with a dihedral angle of 29.13 (9)°. Intermolecular N—H···N hydrogen bonding presents in the crystal structure (Table 1).

Related literature top

For general background on indazole derivatives and their pharmacological properties, see: Bistochi et al. (1981); Keppler & Hartmann (1994); Sun et al. (1997); Gomtsyan et al. (2008).

Experimental top

A solution of 3,4-dihydronaphthalen-1(2H)-one (1.46 g, 0.01 mol) was added to a stirred solution of hydrazine (0.05 g, 0.01 mol) in dry tetrahydrofuran (50 ml) at 273 K for 3 h. Then n-butyllithium (0.02 mol) was added at a fast dropwise rate during a 5 min period at 273 K. The solution was stirred at 273 K for an additional 30 min, then methyl isonicotinate (1.37 g, 0.01 mol) dissolved in 40 ml of THF was added to the dilithiated intermediate, and the solution was stirred for 1 h at 273 K. Finally, 20 ml of 3 M hydrochloric acid was added, and the two phase mixture was well stirred and heated under reflux for 45 min. The mixture was then neutralized with solid sodium bicarbonate, and the layers were separated. The aqueous layer was extracted with ether. The organic fractions were combined, evaporated, the crude product was dissolved in methanol (60 ml). The solution was filtered and the filtrate was set aside for three weeks to obtain colorless single crystals of the title compound.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 or 0.97 Å, N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
3-(4-Pyridyl)-4,5-dihydro-1H-benzo[g]indazole top
Crystal data top
C16H13N3F(000) = 1040
Mr = 247.29Dx = 1.310 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2217 reflections
a = 15.306 (2) Åθ = 2.2–25.0°
b = 8.8368 (13) ŵ = 0.08 mm1
c = 18.543 (3) ÅT = 293 K
V = 2508.1 (6) Å3Block, colorless
Z = 80.22 × 0.19 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1978 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
graphiteθmax = 25.0°, θmin = 2.2°
φ and ω scansh = 1817
24926 measured reflectionsk = 109
2217 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.7587P]
where P = (Fo2 + 2Fc2)/3
2217 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H13N3V = 2508.1 (6) Å3
Mr = 247.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.306 (2) ŵ = 0.08 mm1
b = 8.8368 (13) ÅT = 293 K
c = 18.543 (3) Å0.22 × 0.19 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1978 reflections with I > 2σ(I)
24926 measured reflectionsRint = 0.036
2217 independent reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.130Δρmax = 0.44 e Å3
S = 1.08Δρmin = 0.25 e Å3
2217 reflectionsAbsolute structure: ?
172 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.37603 (9)0.33266 (16)0.11204 (7)0.0442 (4)
H20.32990.38820.11240.053*
N10.43088 (9)0.32191 (17)0.05503 (8)0.0458 (4)
C20.65724 (12)0.2397 (2)0.07332 (10)0.0563 (5)
H2A0.67470.30780.10870.068*
C110.41088 (14)0.1591 (2)0.29215 (10)0.0567 (5)
C50.56409 (10)0.18489 (19)0.02662 (9)0.0436 (4)
C70.40188 (10)0.24622 (18)0.16853 (9)0.0415 (4)
C120.36103 (11)0.2337 (2)0.23932 (9)0.0466 (4)
C80.47774 (11)0.17516 (19)0.14790 (9)0.0438 (4)
C60.49343 (10)0.22560 (19)0.07685 (9)0.0425 (4)
C40.60463 (11)0.0446 (2)0.02934 (10)0.0484 (4)
H40.58810.02610.06390.058*
C90.52238 (13)0.0675 (2)0.19845 (11)0.0631 (5)
H9A0.50180.03460.18950.076*
H9B0.58490.06960.18990.076*
C10.66954 (11)0.0109 (2)0.01959 (10)0.0534 (5)
H10.69580.08380.01650.064*
N30.69715 (9)0.10469 (18)0.07098 (8)0.0534 (4)
C30.59220 (12)0.2840 (2)0.02683 (10)0.0528 (5)
H30.56720.37950.03110.063*
C130.27959 (13)0.2938 (2)0.25682 (11)0.0614 (5)
H130.24680.34340.22190.074*
C140.37630 (18)0.1460 (3)0.36132 (11)0.0726 (6)
H140.40820.09620.39680.087*
C150.29537 (18)0.2057 (3)0.37810 (12)0.0771 (7)
H150.27330.19590.42460.092*
C160.24751 (16)0.2795 (3)0.32620 (12)0.0761 (7)
H160.19320.32000.33780.091*
C100.50413 (16)0.1100 (3)0.27516 (12)0.0759 (7)
H10A0.54320.19180.28840.091*
H10B0.51830.02400.30550.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0354 (7)0.0488 (8)0.0484 (8)0.0074 (6)0.0015 (6)0.0005 (6)
N10.0395 (8)0.0497 (8)0.0480 (8)0.0035 (6)0.0009 (6)0.0016 (6)
C20.0498 (11)0.0611 (12)0.0579 (11)0.0071 (9)0.0052 (8)0.0048 (9)
C110.0704 (12)0.0498 (11)0.0499 (10)0.0028 (9)0.0010 (9)0.0031 (8)
C50.0331 (8)0.0480 (9)0.0496 (9)0.0036 (7)0.0023 (7)0.0032 (7)
C70.0375 (9)0.0422 (9)0.0447 (9)0.0016 (7)0.0033 (7)0.0008 (7)
C120.0474 (10)0.0449 (9)0.0474 (9)0.0077 (8)0.0013 (7)0.0040 (7)
C80.0379 (9)0.0430 (9)0.0504 (10)0.0011 (7)0.0024 (7)0.0020 (7)
C60.0361 (8)0.0416 (9)0.0498 (9)0.0019 (7)0.0022 (7)0.0007 (7)
C40.0412 (9)0.0455 (10)0.0585 (10)0.0024 (7)0.0045 (8)0.0002 (8)
C90.0590 (12)0.0645 (12)0.0658 (12)0.0145 (10)0.0004 (9)0.0158 (10)
C10.0428 (10)0.0493 (10)0.0681 (12)0.0001 (8)0.0046 (8)0.0068 (9)
N30.0396 (8)0.0601 (10)0.0605 (9)0.0063 (7)0.0053 (7)0.0069 (7)
C30.0455 (10)0.0520 (11)0.0610 (11)0.0020 (8)0.0051 (8)0.0058 (9)
C130.0494 (11)0.0756 (13)0.0592 (11)0.0032 (10)0.0058 (9)0.0080 (10)
C140.0972 (18)0.0692 (14)0.0515 (11)0.0096 (13)0.0013 (11)0.0068 (10)
C150.0888 (17)0.0870 (16)0.0554 (12)0.0268 (14)0.0208 (12)0.0080 (11)
C160.0628 (13)0.0966 (17)0.0689 (13)0.0122 (12)0.0210 (11)0.0184 (13)
C100.0849 (14)0.0828 (16)0.0600 (12)0.0256 (12)0.0095 (11)0.0120 (11)
Geometric parameters (Å, °) top
N2—N11.353 (2)C4—C11.378 (2)
N2—C71.356 (2)C4—H40.9300
N2—H20.8600C9—C101.497 (3)
N1—C61.343 (2)C9—H9A0.9700
C2—N31.341 (3)C9—H9B0.9700
C2—C31.374 (3)C1—N31.332 (2)
C2—H2A0.9300C1—H10.9300
C11—C141.393 (3)C3—H30.9300
C11—C121.406 (3)C13—C161.383 (3)
C11—C101.525 (3)C13—H130.9300
C5—C41.387 (2)C14—C151.382 (4)
C5—C31.391 (2)C14—H140.9300
C5—C61.472 (2)C15—C161.374 (4)
C7—C81.374 (2)C15—H150.9300
C7—C121.458 (2)C16—H160.9300
C12—C131.393 (3)C10—H10A0.9700
C8—C61.412 (2)C10—H10B0.9700
C8—C91.500 (2)
N1—N2—C7112.52 (13)C8—C9—H9A109.6
N1—N2—H2123.7C10—C9—H9B109.6
C7—N2—H2123.7C8—C9—H9B109.6
C6—N1—N2104.56 (13)H9A—C9—H9B108.1
N3—C2—C3124.28 (18)N3—C1—C4124.42 (18)
N3—C2—H2A117.9N3—C1—H1117.8
C3—C2—H2A117.9C4—C1—H1117.8
C14—C11—C12118.3 (2)C1—N3—C2115.61 (16)
C14—C11—C10121.50 (19)C2—C3—C5119.47 (18)
C12—C11—C10119.84 (17)C2—C3—H3120.3
C4—C5—C3116.76 (16)C5—C3—H3120.3
C4—C5—C6121.60 (16)C16—C13—C12120.0 (2)
C3—C5—C6121.63 (16)C16—C13—H13120.0
N2—C7—C8106.80 (14)C12—C13—H13120.0
N2—C7—C12127.82 (15)C15—C14—C11121.1 (2)
C8—C7—C12125.33 (15)C15—C14—H14119.5
C13—C12—C11120.13 (17)C11—C14—H14119.5
C13—C12—C7124.38 (17)C16—C15—C14120.1 (2)
C11—C12—C7115.47 (16)C16—C15—H15120.0
C7—C8—C6105.03 (14)C14—C15—H15120.0
C7—C8—C9120.04 (16)C15—C16—C13120.4 (2)
C6—C8—C9134.91 (16)C15—C16—H16119.8
N1—C6—C8111.09 (15)C13—C16—H16119.8
N1—C6—C5119.20 (15)C9—C10—C11116.24 (18)
C8—C6—C5129.68 (15)C9—C10—H10A108.2
C1—C4—C5119.47 (17)C11—C10—H10A108.2
C1—C4—H4120.3C9—C10—H10B108.2
C5—C4—H4120.3C11—C10—H10B108.2
C10—C9—C8110.47 (17)H10A—C10—H10B107.4
C10—C9—H9A109.6
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.172.895 (2)141
Symmetry codes: (i) x−1/2, −y+1/2, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.172.895 (2)141
Symmetry codes: (i) x−1/2, −y+1/2, −z.
Acknowledgements top

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (No. 2007–005) for financial support.

references
References top

Bistochi, G. A., De Meo, G., Pedini, M., Ricci, A., Brouilhet, H., Bucherie, S., Rabaud, M. & Jacquignon, P. (1981). Farmaco Ed. Sci. 36, 315–333.

Bruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Gomtsyan, A., Bayburt, E. K., Schmidt, R. G., Surowy, C. S., Honore, P., Marsh, K. C., Hannick, S. M., McDonald, H. A., Wetter, J. M., Sullivan, J. P., Jarvis, M. F., Faltynek, C. R. & Lee, C. H. (2008). J. Med. Chem. 51, 392–395.

Keppler, B. K. & Hartmann, M. (1994). Met. Based Drugs. 1, 145–149.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sun, J. H., Teleha, C. A., Yan, J. S., Rodgers, J. D. & Nugiel, D. A. (1997). J. Org. Chem. 62, 5627–5629.