supplementary materials


bi2343 scheme

Acta Cryst. (2009). E65, o478    [ doi:10.1107/S1600536809003997 ]

Dibutyl 2,2'-bipyridine-4,4'-dicarboxylate

Q. Li, R. Zhang and Y. Shi

Abstract top

In the title compound, C20H24N2O4, the molecule lies on a centre of symmetry and is approximately planar (r.m.s. deviation= 0.013 Å for 26 non-H atoms). The carboxylate group is inclined slightly to the neighbouring pyridine ring, forming a dihedral angle of 4.37 (2)°. The molecules form stacks with an interplanar separation of 3.547 (1) Å.

Comment top

The crystal structure of 2,2'-bipyridine-4,4'-dicarboxylic acid (H2dcbp) has been reported by Tynan et al. (2003), and a polymeric structure contaning trimethyltin has been reported by Stocco et al. (1996). Herein, we have reacted H2dcbp with tri-n-butyltin chloride. Unexpectedly, we obtained the centrosymmetric title compound only. The C2—N1—C6 bond angle of 117.47 (15)° is similar to those for the free pyridine (Fujihara et al., 2004). The dihedral angle between the pyridine ring and the carboxylate group [C1,O1,O2] is 4.37 (2)°. The bond lengths of C1—O1 and C7—O1 are 1.332 (2) and 1.458 (2) Å, respectively.

Related literature top

For related structures, see: Stocco et al. (1996); Tynan et al. (2003); Fujihara et al., (2004).

Experimental top

The reaction was carried out under a nitrogen atmosphere. 2,2'-Bipyridine-4,4'-dicarboxylic acid (1 mmol) and sodium ethoxide (2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Tri-n-butyltin chloride (2 mmol) was then added and the reaction mixture was stirred for 12 h at 353 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless blocks (yield 83%. m.p. 435 K). Elemental analysis calculated: C, 67.10; H, 6.79; N, 7.86 %; found: C, 66.92; H, 6.95; N, 7.59 %.

Refinement top

H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (pyridine), 0.97 Å (methylene) or 0.96 Å (methyl), and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 30% probability displacement ellipsoids for non-H atoms.
Dibutyl 2,2'-bipyridine-4,4'-dicarboxylate top
Crystal data top
C20H24N2O4F(000) = 380
Mr = 356.41Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1638 reflections
a = 7.4183 (9) Åθ = 2.7–26.7°
b = 8.2829 (10) ŵ = 0.09 mm1
c = 15.375 (2) ÅT = 298 K
β = 93.273 (1)°Block, colorless
V = 943.2 (2) Å30.40 × 0.30 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1654 independent reflections
Radiation source: fine-focus sealed tube1135 reflections with I > 2σ(I)
graphiteRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.966, Tmax = 0.987k = 98
4552 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.199P]
where P = (Fo2 + 2Fc2)/3
1654 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C20H24N2O4V = 943.2 (2) Å3
Mr = 356.41Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4183 (9) ŵ = 0.09 mm1
b = 8.2829 (10) ÅT = 298 K
c = 15.375 (2) Å0.40 × 0.30 × 0.15 mm
β = 93.273 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1654 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1135 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.987Rint = 0.021
4552 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.15 e Å3
S = 1.03Δρmin = 0.13 e Å3
1654 reflectionsAbsolute structure: ?
119 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8610 (2)0.42720 (18)0.09153 (9)0.0544 (4)
O10.38773 (17)0.20544 (16)0.09033 (7)0.0619 (4)
O20.57083 (19)0.32666 (19)0.19126 (8)0.0755 (5)
C10.5333 (2)0.2904 (2)0.11660 (11)0.0539 (5)
C20.9120 (2)0.45867 (19)0.00815 (10)0.0451 (4)
C30.8062 (2)0.4163 (2)0.06010 (10)0.0481 (4)
H30.84370.44190.11720.058*
C40.6451 (2)0.3358 (2)0.04254 (10)0.0469 (4)
C50.5929 (2)0.3018 (2)0.04371 (11)0.0540 (5)
H50.48570.24740.05810.065*
C60.7040 (3)0.3510 (2)0.10735 (11)0.0588 (5)
H60.66740.32970.16510.071*
C70.2671 (3)0.1586 (3)0.15756 (12)0.0706 (6)
H7A0.22450.25380.18690.085*
H7B0.33070.09050.20050.085*
C80.1112 (2)0.0691 (2)0.11506 (11)0.0567 (5)
H8A0.15540.02720.08730.068*
H8B0.05300.13640.07010.068*
C90.0258 (3)0.0211 (3)0.17920 (13)0.0760 (6)
H9A0.06950.11770.20670.091*
H9B0.03350.04510.22440.091*
C100.1854 (3)0.0711 (3)0.13862 (14)0.0768 (6)
H10A0.23920.01030.09070.115*
H10B0.27290.08760.18140.115*
H10C0.14550.17370.11800.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0561 (9)0.0655 (10)0.0412 (8)0.0060 (8)0.0003 (7)0.0020 (7)
O10.0569 (8)0.0808 (9)0.0486 (7)0.0149 (7)0.0077 (6)0.0001 (6)
O20.0741 (10)0.1073 (12)0.0448 (7)0.0210 (8)0.0004 (7)0.0002 (7)
C10.0511 (11)0.0601 (12)0.0500 (11)0.0004 (9)0.0006 (9)0.0040 (9)
C20.0488 (9)0.0461 (10)0.0402 (9)0.0038 (8)0.0008 (7)0.0024 (7)
C30.0500 (10)0.0538 (11)0.0396 (9)0.0026 (8)0.0048 (8)0.0012 (8)
C40.0467 (10)0.0489 (10)0.0449 (9)0.0053 (8)0.0012 (7)0.0029 (8)
C50.0516 (11)0.0598 (11)0.0499 (10)0.0042 (9)0.0028 (8)0.0042 (9)
C60.0627 (12)0.0733 (13)0.0396 (9)0.0066 (10)0.0036 (9)0.0054 (9)
C70.0682 (13)0.0945 (16)0.0497 (11)0.0170 (11)0.0091 (10)0.0039 (11)
C80.0573 (11)0.0626 (12)0.0506 (10)0.0001 (9)0.0064 (9)0.0042 (9)
C90.0731 (14)0.1050 (17)0.0507 (11)0.0187 (13)0.0097 (10)0.0063 (11)
C100.0684 (14)0.0923 (16)0.0705 (13)0.0141 (12)0.0096 (11)0.0132 (12)
Geometric parameters (Å, °) top
N1—C61.335 (2)C6—H60.930
N1—C21.341 (2)C7—C81.493 (3)
O1—C11.332 (2)C7—H7A0.970
O1—C71.458 (2)C7—H7B0.970
O2—C11.204 (2)C8—C91.509 (3)
C1—C41.495 (2)C8—H8A0.970
C2—C31.391 (2)C8—H8B0.970
C2—C2i1.483 (3)C9—C101.513 (3)
C3—C41.381 (2)C9—H9A0.970
C3—H30.930C9—H9B0.970
C4—C51.389 (2)C10—H10A0.960
C5—C61.377 (2)C10—H10B0.960
C5—H50.930C10—H10C0.960
C6—N1—C2117.47 (15)C8—C7—H7A110.0
C1—O1—C7116.43 (14)O1—C7—H7B110.0
O2—C1—O1124.07 (17)C8—C7—H7B110.0
O2—C1—C4123.74 (17)H7A—C7—H7B108.4
O1—C1—C4112.18 (15)C7—C8—C9112.24 (16)
N1—C2—C3122.14 (15)C7—C8—H8A109.2
N1—C2—C2i116.64 (18)C9—C8—H8A109.2
C3—C2—C2i121.23 (17)C7—C8—H8B109.2
C4—C3—C2119.56 (15)C9—C8—H8B109.2
C4—C3—H3120.2H8A—C8—H8B107.9
C2—C3—H3120.2C8—C9—C10113.81 (17)
C3—C4—C5118.40 (16)C8—C9—H9A108.8
C3—C4—C1118.96 (15)C10—C9—H9A108.8
C5—C4—C1122.64 (16)C8—C9—H9B108.8
C6—C5—C4118.21 (17)C10—C9—H9B108.8
C6—C5—H5120.9H9A—C9—H9B107.7
C4—C5—H5120.9C9—C10—H10A109.5
N1—C6—C5124.20 (16)C9—C10—H10B109.5
N1—C6—H6117.9H10A—C10—H10B109.5
C5—C6—H6117.9C9—C10—H10C109.5
O1—C7—C8108.26 (15)H10A—C10—H10C109.5
O1—C7—H7A110.0H10B—C10—H10C109.5
C7—O1—C1—O21.5 (3)O2—C1—C4—C5175.64 (18)
C7—O1—C1—C4178.51 (15)O1—C1—C4—C54.4 (2)
C6—N1—C2—C30.8 (3)C3—C4—C5—C60.4 (3)
C6—N1—C2—C2i179.14 (18)C1—C4—C5—C6178.98 (16)
N1—C2—C3—C41.5 (3)C2—N1—C6—C50.6 (3)
C2i—C2—C3—C4178.40 (18)C4—C5—C6—N11.2 (3)
C2—C3—C4—C50.9 (2)C1—O1—C7—C8178.49 (16)
C2—C3—C4—C1179.76 (15)O1—C7—C8—C9177.70 (17)
O2—C1—C4—C33.7 (3)C7—C8—C9—C10179.62 (19)
O1—C1—C4—C3176.26 (15)
Symmetry codes: (i) −x+2, −y+1, −z.
Acknowledgements top

The authors thank the National Natural Science Foundation of China (20741008) for financial support.

references
References top

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fujihara, T., Kobayashi, A. & Nagasawa, A. (2004). Acta Cryst. E60, o353–o355.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stocco, G., Guli, G., Girasolo, M. A., Bruno, G., Nicolò, F. & Scopelliti, R. (1996). Acta Cryst. C52, 829–832.

Tynan, E., Jensen, P., Kruger, P. E., Lees, A. C. & Nieuwenhuyzen, M. (2003). Dalton Trans. pp. 1223–1228.