inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages i18-i19

Synthesis, crystal structure and Raman spectrum of K2[(Pt2)(HPO4)4(H2O)2] containing (Pt2)6+ ions

aInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: rglaum@uni-bonn.de

(Received 18 December 2008; accepted 17 February 2009; online 21 February 2009)

In the crystal structure of the acid platinum phosphate dipotassium di-μ-hydrogenphosphato-bis­[aqua­platinum(III)](PtPt), K2[Pt2(HPO4)4(H2O)2], the (Pt2)6+ dumbbells within the paddle-wheel complex show Pt—Pt distances of 2.4944 (5) and 2.4892 (5) Å. The pottassium ions are seven-fold coordinated by hydrogenphosphate groups. In the crystal, O—H⋯O hydrogen bonds help to establish the packing. The Raman spectrum was recorded.

Related literature

The structure of the title isotypic sodium compound, Na2[Pt2(HPO4)4(H2O)2], was determined by Cotton et al. (1982a[Cotton, F. A., Walton, R. A. & Han, S. (1982a). Inorg. Chem. 21, 1709-1710.]). For platinum phosphates, see: Wellmann & Liebau (1981[Wellmann, B. & Liebau, F. (1981). J. Less Common Met. 77, 31-39.]). For related compounds containing dinuclear plati­num(III), see: Bancroft et al. (1984[Bancroft, D. P., Cotton, F. A., Falvello, L. R., Han, S. & Schwotzer, W. (1984). Inorg. Chim. Acta, 87, 147-153.]); Baranovskii & Schelokow (1978[Baranovskii, I. B. & Schelokow, R. N. (1978). Russ. J. Inorg. Chem. 23, 3-17.]); Che et al. (1982[Che, C. M., Schaefer, W. P., Gray, H. B., Dickson, M. K., Stein, P. & Roundhill, D. M. (1982). J. Am. Chem. Soc. 104, 4253-4255.]); Cotton & Walton (1982b[Cotton, F. A. & Walton, R. A. (1982b). In Multiple Bonds between Metal Atoms. New York: Wiley.]); Dikareva et al. (1982[Dikareva, L. M., Sadikov, G. G., Porai-Koshits, M. A., Baranovskii, I. B., Abdullaev, S. S. & Schelokow, R. N. (1982). Russ. J. Inorg. Chem. 27, 417-423.], 1987[Dikareva, L. M., Zefirov, Yu. V., Zhilyaev, A. N., Baranovskii, I. B. & Porai-Koshits, M. A. (1987). Russ. J. Inorg. Chem. 32, 118-125.]); Muraveiskaya et al. (1974[Muraveiskaya, G. S., Orlova, V. S. & Evstaf'eva, O. N. (1974). Russ. J. Inorg. Chem. 19, 1030-1035.], 1976[Muraveiskaya, G. S., Kukina, G. A., Orlova, V. S., Evstaf'eva, O. N. & Porai-Koshits, M. A. (1976). Dokl. Akad. Nauk SSSR, 226, 596-599.]); Pley & Wickleder (2004a[Pley, M. & Wickleder, M. S. (2004a). Z. Anorg. Allg. Chem. 630, 1036-1039.],b[Pley, M. & Wickleder, M. S. (2004b). Angew. Chem. 116, 4262-4264.], 2005[Pley, M. & Wickleder, M. S. (2005). Z. Anorg. Allg. Chem. 631, 592-595.]); Stein et al. (1983[Stein, P., Dickson, M. K. & Roundhill, D. M. (1983). J. Am. Chem. Soc. 105, 3489-3494.]); Woollins & Kelly (1985[Woollins, J. D. & Kelly, P. F. (1985). Coord. Chem. Rev. 65, 115-140.]). For the ternary system Pd/P/O, see: Palkina et al. (1978[Palkina, K. K., Maksimova, S. I., Lavrov, A. V. & Chalisova, N. A. (1978). Dokl. Akad. Nauk SSSR, 242, 829-831.]); Panagiotidis et al. (2005[Panagiotidis, K., Glaum, R., Schmedt auf der Günne, J., Hoffbauer, W. & Görzel, H. (2005). Z. Anorg. Allg. Chem. 631, 2371-2376.]). For hydrogen bonds, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. 114, 50-81.]). For the Raman spectra of In3(PO4)2 and In2O(PO4), see: Thauern & Glaum (2004[Thauern, H. & Glaum, R. (2004). Z. Anorg. Allg. Chem. 630, 2463-2467.]). For the synthesis, see: Brauer (1978[Brauer, G. (1978). In Handbuch der Präparativen und Anorganischen Chemie. Stuttgart: Ferdinand Enke.]).

Experimental

Crystal data
  • K2[Pt2(HPO4)4(H2O)2]

  • Mr = 888.32

  • Triclinic, [P \overline 1]

  • a = 7.8852 (2) Å

  • b = 7.9657 (2) Å

  • c = 13.7739 (4) Å

  • α = 82.358 (1)°

  • β = 81.509 (1)°

  • γ = 65.528 (1)°

  • V = 776.32 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 19.05 mm−1

  • T = 123 K

  • 0.24 × 0.14 × 0.08 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.060, Tmax = 0.224

  • 18915 measured reflections

  • 5589 independent reflections

  • 4077 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 0.98

  • 5589 reflections

  • 259 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 3.46 e Å−3

  • Δρmin = −2.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O31i 0.83 (6) 1.73 (6) 2.559 (7) 173 (8)
O1—H1B⋯O21ii 0.84 (6) 2.09 (4) 2.860 (7) 153 (8)
O14—H14⋯O31iii 0.83 (2) 1.82 (5) 2.548 (7) 146 (9)
O24—H24⋯O11iv 0.84 (7) 1.73 (7) 2.562 (7) 177 (9)
O34—H34⋯O41v 0.83 (6) 1.74 (3) 2.546 (6) 162 (9)
O10—H10A⋯O41vi 0.86 (2) 1.94 (4) 2.713 (7) 148 (7)
O10—H10B⋯O11vii 0.86 (2) 1.86 (2) 2.694 (6) 164 (6)
O42—H42⋯O21viii 0.84 (7) 2.27 (9) 2.475 (7) 94 (6)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) -x, -y, -z+1; (iv) -x+2, -y-1, -z+1; (v) -x-1, -y+2, -z; (vi) -x, -y+2, -z; (vii) -x+1, -y, -z+1; (viii) -x+1, -y+1, -z.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Information on phosphates of noble metals like platinum and palladium is scarcely found in literature. During our recent investigation of the ternary system Pd/P/O we obtained the diphosphate PdII2P2O7 (Panagiotidis et al., 2005) in addition to the already known Pd(PO3)2 (Palkina et al., 1978). In this context we were also interested in the crystal chemistry of platinum phosphates. Up to now, PtIVP2O7 (Wellmann & Liebau, 1981) is the only structurally characterized anhydrous phosphate of platinum. Since reactions starting from "PtO×3H2O" and P4O10 did not yield products suitable for closer investigation we tried an alternative synthetic approach by reacting K2PtCl4 with conc. H3PO4 (see Experimental). This led to the formation of orange crystals of K2[(Pt2)(HPO4)4(H2O)2]. The acid phosphate is isotypic to the sodium compound (Cotton et al., 1982a). In contrast to the structure of Na2[(Pt2)(HPO4)4(H2O)2] no disordered oxygen atoms are observed in the potassium compound. Distances d(Pt—Pt) for both structures are identical. The conventional residual as well as the standard deviations of the interatomic distances are slightly smaller for the refinement of K2[(Pt2)(HPO4)4(H2O)2]. The (Pt2)6+ binuclear complex was first observed in the crystal structure of K2[(Pt2(SO4)4(H2O)2] (Muraveiskaya et al., 1974; Muraveiskaya et al., 1976). By reaction of elemental platinum with concentrated sulfuric acid various platinum(III) sulfates were recently synthesized and structurally characterized (Pley & Wickleder, 2004a,b; Pley & Wickleder, 2005).

In K2[(Pt2)(HPO4)4(H2O)2] two crystallographically equivalent platinum atoms are connected to form (Pt2)6+ dinuclear complexes with surrounding (HPO4)2- groups (Fig. 1). The ligating oxygen atoms of the (HPO4)2- ions are arranged in a square-planar coordination around each platinum atom. Distances d(Pt—O) range from 1.978 Å to 2.030 Å. Angles (O,Pt,O) are deviating only slightly from 90° and 180°, respectively. Due to their different crystal chemical environment, the oxygen atoms of the hydrogenphosphate anions show significantly different bond lenghts d(P—O). Oxygen atoms attached to platinum (coordination number of oxygen c.n.(O) = 2 (P, Pt)) show distances d(P—O) = 1.55 Å. Distances d(P—O) for those oxygen atoms which are coordinated to K+ ions (c.n.(O) = 2 (P, K)) range from 1.489 Å to 1.507 Å. Furthermore, for oxygen atoms which are attached to a hydrogen atom within the (HPO4)2- unit (c.n.(O) = 2, (P, H)), distances d(P—OH) around 1.565 Å are observed. The axial ligand positions of the Pt2 dumbbells are occupied by water molecules (Fig. 1 & 2). Distances d(Pt—O) = 2.135 Å observed for the water ligands are significantly longer than those within the [Pt2O8] entity. The hydrogen atoms of [HPO4] tetrahedra (H14, H24, H34, H42; numbering according to the oxygen atoms that cary the hydrogen) and the water molecules (H1A, H1B, H10A, H10B) are involved in hydrogen bonding with oxygen atoms of adjacent [(Pt2)(HPO4)(H2O)2]2- units. Interatomic distances d(OH···OP) range from 1.73 Å to 2.27 Å. They are in good accordance with those observed for strong hydrogen bonds (Steiner, 2002).

As found for various other compounds containing the (Pt2)6+ dinuclear complex, the angle (Pt,Pt,O) between the dumbbell and the axial oxygen atoms deviates only slightly from 180° (Cotton et al., 1982b; Pley & Wickleder et al., 2005). [HPO4] tetrahedra in [(Pt2)(HPO4)(H2O)2]2- show no significant angular distortion. Charge compensation of the anionic [PtIII2(HPO4)4(H2O)2]2- unit is achieved by two crystallographically independent K+ ions, which are surrounded by oxygen atoms of phosphate groups.

In addition to its structure refinement, we were able to record the Raman spectrum of the paddle-wheel complex [PtIII2(HPO4)4(H2O)2]2- (Fig. 3). An unequivocal assignment of the observed signals is yet impossible. Comparison of the Raman spectrum to those of the In24+ containing indium phosphates In3(PO4)2 and In2O(PO4) (Thauern & Glaum, 2004) suggests the Pt—Pt valence vibration to be at ν = 222 cm-1. In comparison to ν(Pt—Pt) in complexes [(PtIII2)L4L'2]n- (Stein et al., 1983) assignment of ν = 83 cm-1 to the Pt—Pt vibration appears to be unreasonable. This is the more so, since d (Pt—Pt) = 2.51 Å observed for K2[(Pt2)(HPO4)4(H2O)2] is close to the lower limit of 2.47 Å < d (Pt—Pt) < 2.695 Å found for a series of dinuclear platinum(III) complexes (Che et al., 1982, Stein et al., 1983, Muraveiskaya et al., 1974).

Related literature top

The structure of the title isotypic sodium compound, Na2[Pt2(HPO4)4(H2O)2], was determined by Cotton et al. (1982a). For platinum phosphates, see: Wellmann & Liebau (1981). For related compounds containing dinuclear platinum(III), see: Bancroft et al. (1984); Baranovskii & Schelokow (1978); Che et al. (1982); Cotton & Walton (1982b); Dikareva et al. (1982, 1987); Muraveiskaya et al. (1974, 1976); Pley & Wickleder (2004a,b, 2005); Stein et al. (1983); Woollins & Kelly (1985). For the ternary system Pd/P/O, see: Palkina et al. (1978); Panagiotidis et al. (2005); For hydrogen bonds, see: Steiner (2002). For the Raman spectra of In3(PO4)2 and In2O(PO4), see: Thauern & Glaum (2004). For the synthesis, see: Brauer (1978).

Experimental top

Aiming at the crystallization of "Pt2P2O7" a reaction starting from 150.0 mg K2PtIICl4, which were dissolved in water and mixed with 5.0 ml conc. H3PO4, was performed. After the obtained red solution was kept in a desiccator over P2O5 for two weeks, plate-like, orange crystals of K2[(Pt2)(HPO4)4(H2O)2] with edge-lengths up to 0.3 mm were deposited besides microcrystalline platinum (eq. 1). The synthesis of K2[PtIICl4] was performed according to the procedure given by Brauer (1978).

3 K2[PtIICl4] + 4 H3PO4 + 2 H2O K2[(PtIII2)(HPO4)4(H2O)2] + Pts + 8H+ + 12 C l- + 4 K+ (eq. 1)

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Pa ddle-wheel complex [(PtIII2)(HPO4)4(H2O)2] with anisotropic displacement parameters given at the 50% level (Progr. ATOMS v.6.2).
[Figure 2] Fig. 2. Projection of the crystal strucure of K2[(Pt2)(HPO4)4(H2O)2] along [110]. [PO4] tetrahedra (yellow), Pt26+ (red), K+ (violet), H+ (blue), O2- (white) (Progr. ATOMS v.6.2).
[Figure 3] Fig. 3. Raman spectrum of K2[(Pt2)(HPO4)4(H2O)2].
dipotassium di-µ-hydrogenphosphato-bis[aquaplatinum(III)](PtPt) top
Crystal data top
K2[Pt2(HPO4)4(H2O)2]Z = 2
Mr = 888.32F(000) = 812
Triclinic, P1The lattice parameters of K2[Pt2(HPO4)4(H2O)2] were determined from single crystal diffraction data.
Hall symbol: -P 1Dx = 3.800 Mg m3
a = 7.8852 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9657 (2) ÅCell parameters from 5589 reflections
c = 13.7739 (4) Åθ = 1.5–32.5°
α = 82.358 (1)°µ = 19.05 mm1
β = 81.509 (1)°T = 123 K
γ = 65.528 (1)°Plate, orange
V = 776.32 (4) Å30.24 × 0.14 × 0.08 mm
Data collection top
Nonius Kappa CCD
diffractometer
5589 independent reflections
Radiation source: MoKα4077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 9 pixels mm-1θmax = 32.5°, θmin = 1.5°
CCD rotation images scansh = 1111
Absorption correction: multi-scan
(Blessing, 1995)
k = 1212
Tmin = 0.060, Tmax = 0.224l = 1920
18915 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
5589 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 3.46 e Å3
10 restraintsΔρmin = 2.87 e Å3
0 constraints
Crystal data top
K2[Pt2(HPO4)4(H2O)2]γ = 65.528 (1)°
Mr = 888.32V = 776.32 (4) Å3
Triclinic, P1Z = 2
a = 7.8852 (2) ÅMo Kα radiation
b = 7.9657 (2) ŵ = 19.05 mm1
c = 13.7739 (4) ÅT = 123 K
α = 82.358 (1)°0.24 × 0.14 × 0.08 mm
β = 81.509 (1)°
Data collection top
Nonius Kappa CCD
diffractometer
5589 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4077 reflections with I > 2σ(I)
Tmin = 0.060, Tmax = 0.224Rint = 0.064
18915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03310 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 3.46 e Å3
5589 reflectionsΔρmin = 2.87 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances and angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.1242 (4)0.3657 (4)0.6326 (2)0.0790 (9)
K20.3845 (3)0.1884 (3)0.90856 (15)0.0472 (5)
O10.6393 (7)0.2464 (8)0.6286 (4)0.0289 (11)
H1A0.566 (8)0.299 (10)0.676 (4)0.043*
H1B0.734 (6)0.175 (9)0.656 (5)0.043*
O120.6784 (7)0.1304 (6)0.6372 (3)0.0238 (10)
O140.4660 (7)0.2761 (7)0.7170 (4)0.0305 (11)
H140.486 (13)0.387 (4)0.717 (6)0.046*
O110.8028 (7)0.4742 (7)0.6678 (3)0.0256 (10)
O130.5849 (7)0.3216 (6)0.5370 (3)0.0245 (10)
O220.7832 (6)0.0412 (7)0.4628 (4)0.0247 (10)
O240.9754 (7)0.3003 (7)0.4569 (3)0.0276 (11)
H241.045 (10)0.372 (10)0.415 (5)0.041*
O210.9903 (7)0.0893 (7)0.3117 (4)0.0298 (11)
O230.6936 (6)0.1446 (7)0.3608 (3)0.0267 (10)
O100.2526 (7)0.5993 (7)0.1437 (3)0.0249 (10)
H10A0.207 (11)0.719 (3)0.141 (5)0.037*
H10B0.226 (11)0.582 (9)0.2058 (19)0.037*
O320.1067 (6)0.5907 (6)0.1622 (3)0.0212 (9)
O330.3103 (6)0.5226 (6)0.0567 (3)0.0199 (9)
O340.4078 (7)0.8408 (7)0.1168 (4)0.0286 (11)
H340.520 (4)0.896 (11)0.107 (6)0.043*
O310.4038 (6)0.5674 (7)0.2362 (3)0.0231 (10)
O440.0110 (6)0.8018 (7)0.0001 (3)0.0236 (10)
O410.2456 (6)1.0558 (6)0.0996 (3)0.0233 (10)
O430.2059 (6)0.7307 (6)0.1068 (3)0.0210 (9)
O420.0530 (7)0.8330 (7)0.1816 (4)0.0310 (12)
H420.050 (13)0.930 (7)0.162 (6)0.047*
P10.6381 (2)0.3051 (2)0.63814 (12)0.0220 (3)
P20.8592 (2)0.1187 (2)0.39488 (12)0.0215 (3)
P30.3082 (2)0.6280 (2)0.14389 (12)0.0180 (3)
P40.1056 (2)0.8585 (2)0.09741 (12)0.0187 (3)
Pt10.54549 (3)0.09217 (3)0.549475 (17)0.01966 (7)
Pt20.09528 (3)0.53533 (3)0.052197 (16)0.01543 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.101 (2)0.087 (2)0.0691 (17)0.0526 (18)0.0488 (16)0.0208 (15)
K20.0525 (12)0.0601 (13)0.0406 (10)0.0346 (11)0.0048 (9)0.0133 (9)
O10.030 (3)0.030 (3)0.029 (3)0.013 (2)0.000 (2)0.010 (2)
O120.030 (2)0.020 (2)0.021 (2)0.011 (2)0.0040 (19)0.0035 (18)
O140.032 (3)0.028 (3)0.028 (3)0.014 (2)0.007 (2)0.001 (2)
O110.028 (2)0.021 (2)0.019 (2)0.003 (2)0.0023 (19)0.0031 (18)
O130.029 (2)0.019 (2)0.021 (2)0.006 (2)0.0018 (19)0.0019 (18)
O220.019 (2)0.023 (2)0.030 (3)0.007 (2)0.0021 (19)0.005 (2)
O240.029 (3)0.026 (3)0.019 (2)0.005 (2)0.0028 (19)0.0021 (19)
O210.022 (2)0.031 (3)0.029 (3)0.008 (2)0.0055 (19)0.007 (2)
O230.021 (2)0.028 (3)0.025 (2)0.005 (2)0.0031 (19)0.006 (2)
O100.028 (2)0.032 (3)0.020 (2)0.018 (2)0.0068 (19)0.0045 (19)
O320.018 (2)0.023 (2)0.020 (2)0.0061 (19)0.0014 (17)0.0005 (18)
O330.018 (2)0.025 (2)0.016 (2)0.0101 (19)0.0043 (16)0.0019 (17)
O340.020 (2)0.025 (3)0.038 (3)0.006 (2)0.003 (2)0.001 (2)
O310.024 (2)0.026 (3)0.019 (2)0.013 (2)0.0055 (18)0.0032 (18)
O440.021 (2)0.023 (2)0.028 (2)0.011 (2)0.0080 (18)0.0054 (19)
O410.021 (2)0.017 (2)0.031 (3)0.0073 (19)0.0051 (19)0.0016 (19)
O430.022 (2)0.020 (2)0.019 (2)0.0077 (19)0.0011 (17)0.0025 (17)
O420.025 (2)0.025 (3)0.034 (3)0.007 (2)0.008 (2)0.004 (2)
P10.0237 (8)0.0200 (8)0.0183 (8)0.0061 (7)0.0002 (6)0.0009 (6)
P20.0194 (8)0.0218 (9)0.0189 (8)0.0066 (7)0.0020 (6)0.0024 (6)
P30.0150 (7)0.0204 (8)0.0172 (7)0.0071 (6)0.0016 (6)0.0005 (6)
P40.0167 (7)0.0176 (8)0.0190 (7)0.0057 (6)0.0011 (6)0.0033 (6)
Pt10.02042 (12)0.01997 (13)0.01736 (12)0.00806 (10)0.00056 (9)0.00042 (9)
Pt20.01457 (11)0.01729 (12)0.01430 (11)0.00707 (9)0.00109 (8)0.00101 (8)
Geometric parameters (Å, º) top
K1—O24i2.739 (6)O24—P21.570 (5)
K1—O31ii2.860 (5)O21—P21.489 (5)
K1—O11i2.957 (6)O23—P21.549 (5)
K1—O42iii3.047 (6)O23—Pt1iv2.014 (5)
K1—O22iv3.053 (5)O10—Pt22.132 (5)
K1—O32ii3.156 (5)O32—P31.544 (5)
K1—O12i3.222 (6)O32—Pt21.978 (4)
K2—O142.735 (6)O33—P31.561 (5)
K2—O34v2.822 (6)O33—Pt2vii2.030 (4)
K2—O41v2.858 (5)O34—P31.564 (5)
K2—O33ii2.920 (5)O31—P31.507 (4)
K2—O42iii2.990 (6)O44—P41.555 (5)
K2—O43vi3.000 (5)O44—Pt22.005 (5)
K2—O44iii3.215 (5)O41—P41.500 (5)
O1—Pt12.143 (5)O43—P41.553 (5)
O12—P11.549 (5)O43—Pt2vii2.014 (4)
O12—Pt11.992 (4)O42—P41.541 (5)
O14—P11.564 (5)Pt1—O13iv2.010 (4)
O11—P11.493 (5)Pt1—O23iv2.014 (5)
O13—P11.549 (5)Pt1—Pt1iv2.4944 (5)
O13—Pt1iv2.010 (4)Pt2—O43vii2.014 (4)
O22—P21.541 (5)Pt2—O33vii2.030 (4)
O22—Pt11.985 (4)Pt2—Pt2vii2.4892 (5)
O11—P1—O12110.2 (3)O22—Pt1—O23iv179.02 (19)
O11—P1—O13110.9 (3)O12—Pt1—O23iv90.37 (19)
O12—P1—O13111.5 (3)O13iv—Pt1—O23iv89.97 (19)
O11—P1—O14110.2 (3)O22—Pt1—O185.5 (2)
O12—P1—O14104.8 (3)O12—Pt1—O188.0 (2)
O13—P1—O14109.0 (3)O13iv—Pt1—O190.0 (2)
O21—P2—O22111.1 (3)O23iv—Pt1—O193.6 (2)
O21—P2—O23113.2 (3)O22—Pt1—Pt1iv90.98 (14)
O22—P2—O23109.6 (3)O12—Pt1—Pt1iv91.86 (14)
O21—P2—O24106.9 (3)O13iv—Pt1—Pt1iv90.05 (14)
O22—P2—O24107.7 (3)O23iv—Pt1—Pt1iv89.91 (15)
O23—P2—O24108.1 (3)O1—Pt1—Pt1iv176.49 (14)
O31—P3—O32108.9 (3)O32—Pt2—O4490.05 (19)
O31—P3—O33109.3 (3)O32—Pt2—O43vii89.88 (18)
O32—P3—O33111.8 (3)O44—Pt2—O43vii178.49 (18)
O31—P3—O34111.6 (3)O32—Pt2—O33vii177.57 (17)
O32—P3—O34106.3 (3)O44—Pt2—O33vii90.65 (19)
O33—P3—O34108.9 (3)O43vii—Pt2—O33vii89.36 (18)
O41—P4—O42110.7 (3)O32—Pt2—O1087.17 (19)
O41—P4—O43109.3 (3)O44—Pt2—O1089.05 (19)
O42—P4—O43110.0 (3)O43vii—Pt2—O1089.45 (19)
O41—P4—O44110.6 (3)O33vii—Pt2—O1090.51 (18)
O42—P4—O44106.4 (3)O32—Pt2—Pt2vii91.55 (13)
O43—P4—O44109.7 (2)O44—Pt2—Pt2vii90.52 (13)
O22—Pt1—O1289.21 (19)O43vii—Pt2—Pt2vii90.99 (13)
O22—Pt1—O13iv90.42 (19)O33vii—Pt2—Pt2vii90.77 (13)
O12—Pt1—O13iv178.06 (19)O10—Pt2—Pt2vii178.65 (14)
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x, y1, z+1; (iv) x+1, y, z+1; (v) x, y+1, z+1; (vi) x+1, y1, z+1; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O31v0.83 (6)1.73 (6)2.559 (7)173 (8)
O1—H1B···O21viii0.84 (6)2.09 (4)2.860 (7)153 (8)
O14—H14···O31ii0.83 (2)1.82 (5)2.548 (7)146 (9)
O24—H24···O11ix0.84 (7)1.73 (7)2.562 (7)177 (9)
O34—H34···O41x0.83 (6)1.74 (3)2.546 (6)162 (9)
O10—H10A···O41xi0.86 (2)1.94 (4)2.713 (7)148 (7)
O10—H10B···O11iv0.86 (2)1.86 (2)2.694 (6)164 (6)
O42—H42···O21xii0.84 (7)2.27 (9)2.475 (7)94 (6)
Symmetry codes: (ii) x, y, z+1; (iv) x+1, y, z+1; (v) x, y+1, z+1; (viii) x+2, y, z+1; (ix) x+2, y1, z+1; (x) x1, y+2, z; (xi) x, y+2, z; (xii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaK2[Pt2(HPO4)4(H2O)2]
Mr888.32
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.8852 (2), 7.9657 (2), 13.7739 (4)
α, β, γ (°)82.358 (1), 81.509 (1), 65.528 (1)
V3)776.32 (4)
Z2
Radiation typeMo Kα
µ (mm1)19.05
Crystal size (mm)0.24 × 0.14 × 0.08
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.060, 0.224
No. of measured, independent and
observed [I > 2σ(I)] reflections
18915, 5589, 4077
Rint0.064
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 0.98
No. of reflections5589
No. of parameters259
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)3.46, 2.87

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O31i0.83 (6)1.73 (6)2.559 (7)173 (8)
O1—H1B···O21ii0.84 (6)2.09 (4)2.860 (7)153 (8)
O14—H14···O31iii0.83 (2)1.82 (5)2.548 (7)146 (9)
O24—H24···O11iv0.84 (7)1.73 (7)2.562 (7)177 (9)
O34—H34···O41v0.83 (6)1.74 (3)2.546 (6)162 (9)
O10—H10A···O41vi0.86 (2)1.94 (4)2.713 (7)148 (7)
O10—H10B···O11vii0.86 (2)1.86 (2)2.694 (6)164 (6)
O42—H42···O21viii0.84 (7)2.27 (9)2.475 (7)94 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y, z+1; (iv) x+2, y1, z+1; (v) x1, y+2, z; (vi) x, y+2, z; (vii) x+1, y, z+1; (viii) x+1, y+1, z.
 

Acknowledgements

We thank G. Schnakenburg (University of Bonn) for the single-crystal data collection and D. Ernsthäuser (University of Bonn) for the measurement of the Raman spectrum. This work was financially supported by Deutsche Forschungsgemeinschaft (DFG). A noble metal donation by UMICORE AG (Hanau-Wolfgang, Germany) is gratefully acknowledged.

References

First citationBancroft, D. P., Cotton, F. A., Falvello, L. R., Han, S. & Schwotzer, W. (1984). Inorg. Chim. Acta, 87, 147–153.  CAS Google Scholar
First citationBaranovskii, I. B. & Schelokow, R. N. (1978). Russ. J. Inorg. Chem. 23, 3–17.  CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrauer, G. (1978). In Handbuch der Präparativen und Anorganischen Chemie. Stuttgart: Ferdinand Enke.  Google Scholar
First citationChe, C. M., Schaefer, W. P., Gray, H. B., Dickson, M. K., Stein, P. & Roundhill, D. M. (1982). J. Am. Chem. Soc. 104, 4253–4255.  CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A. & Walton, R. A. (1982b). In Multiple Bonds between Metal Atoms. New York: Wiley.  Google Scholar
First citationCotton, F. A., Walton, R. A. & Han, S. (1982a). Inorg. Chem. 21, 1709–1710.  CrossRef CAS Web of Science Google Scholar
First citationDikareva, L. M., Sadikov, G. G., Porai-Koshits, M. A., Baranovskii, I. B., Abdullaev, S. S. & Schelokow, R. N. (1982). Russ. J. Inorg. Chem. 27, 417–423.  CAS Google Scholar
First citationDikareva, L. M., Zefirov, Yu. V., Zhilyaev, A. N., Baranovskii, I. B. & Porai-Koshits, M. A. (1987). Russ. J. Inorg. Chem. 32, 118–125.  CAS Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMuraveiskaya, G. S., Kukina, G. A., Orlova, V. S., Evstaf'eva, O. N. & Porai-Koshits, M. A. (1976). Dokl. Akad. Nauk SSSR, 226, 596–599.  CAS Google Scholar
First citationMuraveiskaya, G. S., Orlova, V. S. & Evstaf'eva, O. N. (1974). Russ. J. Inorg. Chem. 19, 1030–1035.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalkina, K. K., Maksimova, S. I., Lavrov, A. V. & Chalisova, N. A. (1978). Dokl. Akad. Nauk SSSR, 242, 829–831.  CAS Google Scholar
First citationPanagiotidis, K., Glaum, R., Schmedt auf der Günne, J., Hoffbauer, W. & Görzel, H. (2005). Z. Anorg. Allg. Chem. 631, 2371–2376.  Web of Science CrossRef CAS Google Scholar
First citationPley, M. & Wickleder, M. S. (2004a). Z. Anorg. Allg. Chem. 630, 1036–1039.  Web of Science CrossRef CAS Google Scholar
First citationPley, M. & Wickleder, M. S. (2004b). Angew. Chem. 116, 4262–4264.  CrossRef Google Scholar
First citationPley, M. & Wickleder, M. S. (2005). Z. Anorg. Allg. Chem. 631, 592–595.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStein, P., Dickson, M. K. & Roundhill, D. M. (1983). J. Am. Chem. Soc. 105, 3489–3494.  CrossRef CAS Web of Science Google Scholar
First citationSteiner, T. (2002). Angew. Chem. 114, 50–81.  CrossRef Google Scholar
First citationThauern, H. & Glaum, R. (2004). Z. Anorg. Allg. Chem. 630, 2463–2467.  Web of Science CrossRef CAS Google Scholar
First citationWellmann, B. & Liebau, F. (1981). J. Less Common Met. 77, 31–39.  CrossRef Web of Science Google Scholar
First citationWoollins, J. D. & Kelly, P. F. (1985). Coord. Chem. Rev. 65, 115–140.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages i18-i19
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds