supplementary materials


Acta Cryst. (2009). E65, m349-m350    [ doi:10.1107/S1600536809006722 ]

catena-Poly[[[bis[2,2'-(propane-1,3-diyldithio)bis(1,3,4-thiadiazole)-[kappa]N4]copper(II)]-bis[[mu]-2,2'-(propane-1,3-diyldithio)bis(1,3,4-thiadiazole)-[kappa]2N4:N4']] bis(perchlorate)]

J.-H. Qin, J.-G. Wang and P.-Z. Hu

Abstract top

In the title compound, {[Cu(C7H8N4S4)4](ClO4)2}n, the CuII atom, occupying a crystallographic inversion centre, is six-coordinated by six N atoms of three symmetry-related 2,2'-(propane-1,3-diyldithio)bis(1,3,4-thiadiazole) (L) ligands in a slightly distorted octahedral geometry. The ligand L adopts two kinds of coordination modes in the crystal structure; one is a monodentate coordination mode and serves to complete the octahedral coordination of the Cu atom and the other is an N:N'-bidentate bridging mode in a trans configuration, bridging Cu atoms via translation symmetry along the b axis into a chain structure. The perchlorate ions serve as acceptors for intermolecular C-H...O hydrogen bonds, which link the chains into a three-dimensional network.

Comment top

The asymmetric structure unit of the title compound consists of a half Cu(II) atom, two [1,3-propanediylbis(thio)]bis[1,3,4-thiadiazole] ligands L, and one perchlorate ion. As depicted in Fig. 1,the Cu(II) atom is coordinated by six N atoms from six ligands L in a slightly distorted octahedral geometry of the central atom. All six Cu—N bond distances are within the range expected for such coordination bonds (Tab. 1) (Huang et al., 2009; Wang et al., 2008). The ligand L adopts two kinds of coordination modes in the crystal structure. One N,N-bidentate bridging mode in trans configuration for bridging the copper atom into a one-dimensional chain, with the bridged Cu-Cu distance of 11.122 (3) Å (Fig. 2). The centroid separation and dihedral angle of thiadiazole rings are 9.131 (2) Å and 74.09 (8) °, respectively. The other thiadiazole ligands adopt monodentate coordination mode and serve to complete the octahedral coordination sphere of the copper atom. The corresponding centroid separation and dihedral angle are 8.1499 (16) Å and 65.04 (12) °, respectively. The region between the chains is taken up by uncoordinated perchlorate ions. The perchlorate ions serve as acceptor for C—H···O hydrogen-bonds, which link the chains into a three-dimensional network (Tab. 2. & Fig. 3).

Related literature top

For Cu—N bonds see, for example: Huang et al. (2009); Wang et al. (2008). [Please revise scheme to show the correct proportions within square brackets, i.e. 4 thiadiazole ligands per Cu atom]

Experimental top

The reaction of [1,3-propanediylbis(thio)]bis[1,3,4-thiadiazole] (0.4 mmol) with Cu(ClO4)2 (0.1 mmol) in MeOH(10 ml) for a few minutes afforded a light blue solid, which was filtered, washed with acetone, and dried on air. The single crystals suitable for X-ray analysis were obtained by slow diffusion of Et2O into the acetonitrile solution of the solid.

Refinement top

All hydrogen atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å (CH) and Uiso(H) = 1.2Ueq(C), with C—H = 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the Cu(II) cation in the title compound. Displacement ellipsoids are drawn at the 30% probability level. The H atoms and perchlorate ion were omitted for clarity. Symmetry codes: (A) -x + 1, -y, -z + 1; (B) x, y - 1, z; (C) -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. A view of the polymeric chain in the title compound.
[Figure 3] Fig. 3. A view of the compound packing down the b axis.
catena-Poly[[[bis[2,2'-(propane-1,3-diyldithio)bis(1,3,4-thiadiazole)- κN4]copper(II)]-bis[µ-2,2'-(propane-1,3-diyldithio)bis(1,3,4- thiadiazole)-κ2N4:N4']] bis(perchlorate)] top
Crystal data top
[Cu(C7H8N4S4)4](ClO4)2Z = 1
Mr = 1368.10F(000) = 695
Triclinic, P1Dx = 1.731 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.321 (3) ÅCell parameters from 4352 reflections
b = 11.122 (3) Åθ = 2.5–28.1°
c = 12.908 (4) ŵ = 1.22 mm1
α = 67.213 (3)°T = 294 K
β = 76.602 (3)°Block, blue
γ = 76.675 (3)°0.39 × 0.28 × 0.24 mm
V = 1312.3 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4857 independent reflections
Radiation source: fine-focus sealed tube4081 reflections with I > 2σ(I)
graphiteRint = 0.017
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1212
Tmin = 0.646, Tmax = 0.756k = 1313
9833 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 1.507P]
where P = (Fo2 + 2Fc2)/3
4857 reflections(Δ/σ)max < 0.001
322 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C7H8N4S4)4](ClO4)2γ = 76.675 (3)°
Mr = 1368.10V = 1312.3 (6) Å3
Triclinic, P1Z = 1
a = 10.321 (3) ÅMo Kα radiation
b = 11.122 (3) ŵ = 1.22 mm1
c = 12.908 (4) ÅT = 294 K
α = 67.213 (3)°0.39 × 0.28 × 0.24 mm
β = 76.602 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4857 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4081 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.756Rint = 0.017
9833 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.110Δρmax = 1.05 e Å3
S = 1.03Δρmin = 0.50 e Å3
4857 reflectionsAbsolute structure: ?
322 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.50000.02910 (14)
Cl10.89564 (9)0.39343 (8)0.71273 (7)0.0469 (2)
S10.60750 (10)0.13642 (9)0.74944 (8)0.0494 (2)
S20.42947 (13)0.39702 (10)0.69426 (11)0.0728 (4)
S30.00185 (9)0.78315 (9)0.62689 (9)0.0516 (2)
S40.02700 (10)1.01392 (10)0.68458 (9)0.0569 (3)
S50.58105 (10)0.40131 (8)0.77434 (7)0.0458 (2)
S60.33608 (12)0.34525 (10)0.94441 (8)0.0615 (3)
S70.15521 (18)0.11517 (12)0.90859 (13)0.0951 (5)
S80.11321 (15)0.35074 (11)0.97930 (11)0.0777 (4)
O10.8989 (5)0.4074 (5)0.8153 (4)0.1235 (17)
O20.8069 (6)0.3095 (6)0.7325 (4)0.156 (2)
O31.0235 (4)0.3459 (4)0.6637 (4)0.1009 (12)
O40.8505 (4)0.5164 (4)0.6350 (4)0.1255 (17)
N10.5187 (2)0.0858 (2)0.6070 (2)0.0307 (5)
N20.4504 (3)0.2109 (2)0.6008 (2)0.0347 (6)
N30.2075 (2)0.9204 (2)0.5508 (2)0.0371 (6)
N40.2550 (3)1.0248 (2)0.5561 (2)0.0376 (6)
N50.5102 (3)0.1771 (2)0.6333 (2)0.0336 (5)
N60.4134 (3)0.1871 (2)0.7283 (2)0.0399 (6)
N70.2510 (4)0.1319 (3)1.0804 (3)0.0609 (9)
N80.2522 (4)0.2173 (4)1.1350 (3)0.0696 (10)
C10.6013 (3)0.0364 (3)0.6800 (3)0.0366 (7)
H10.65290.04700.69330.044*
C20.4879 (3)0.2496 (3)0.6710 (3)0.0402 (7)
C30.3046 (4)0.4799 (3)0.6013 (3)0.0510 (9)
H3A0.34780.51220.52260.061*
H3B0.24510.42000.60880.061*
C40.2261 (4)0.5940 (3)0.6378 (4)0.0560 (10)
H4A0.28840.64800.63660.067*
H4B0.18010.55940.71540.067*
C50.1235 (4)0.6790 (3)0.5613 (3)0.0466 (8)
H5A0.07890.62270.54420.056*
H5B0.16960.73410.49010.056*
C60.0906 (3)0.9029 (3)0.6139 (3)0.0376 (7)
C70.1716 (3)1.0817 (3)0.6212 (3)0.0462 (8)
H70.18871.15380.63260.055*
C80.6026 (3)0.2808 (3)0.6447 (3)0.0381 (7)
H80.67390.28820.58730.046*
C90.4384 (3)0.3003 (3)0.8092 (3)0.0418 (7)
C100.3970 (5)0.2527 (4)1.0086 (3)0.0651 (11)
H10A0.36130.28151.08930.078*
H10B0.49450.27501.00110.078*
C110.3601 (5)0.1024 (4)0.9580 (3)0.0645 (11)
H11A0.40710.06200.98980.077*
H11B0.38980.07300.87640.077*
C120.2129 (5)0.0586 (4)0.9817 (4)0.0760 (13)
H12A0.18680.07781.06300.091*
H12B0.16650.11030.96080.091*
C130.1830 (4)0.1885 (4)0.9971 (3)0.0544 (9)
C140.1852 (4)0.3311 (4)1.0921 (4)0.0614 (10)
H140.17620.39841.12030.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0416 (3)0.0211 (2)0.0251 (2)0.00102 (19)0.0102 (2)0.00926 (19)
Cl10.0481 (5)0.0429 (4)0.0516 (5)0.0084 (4)0.0051 (4)0.0196 (4)
S10.0611 (6)0.0441 (5)0.0574 (5)0.0031 (4)0.0342 (4)0.0256 (4)
S20.0904 (8)0.0534 (6)0.1059 (9)0.0226 (5)0.0577 (7)0.0569 (6)
S30.0360 (4)0.0434 (5)0.0709 (6)0.0081 (4)0.0010 (4)0.0186 (4)
S40.0479 (5)0.0579 (6)0.0659 (6)0.0016 (4)0.0071 (4)0.0358 (5)
S50.0629 (5)0.0276 (4)0.0415 (4)0.0035 (4)0.0184 (4)0.0068 (3)
S60.0777 (7)0.0484 (5)0.0432 (5)0.0163 (5)0.0037 (5)0.0036 (4)
S70.1475 (13)0.0572 (7)0.0988 (10)0.0182 (8)0.0737 (10)0.0357 (7)
S80.1132 (10)0.0470 (6)0.0778 (8)0.0187 (6)0.0536 (7)0.0231 (5)
O10.136 (4)0.153 (4)0.130 (3)0.027 (3)0.063 (3)0.107 (3)
O20.191 (5)0.200 (5)0.137 (4)0.153 (5)0.053 (4)0.098 (4)
O30.072 (2)0.086 (2)0.125 (3)0.0190 (18)0.004 (2)0.045 (2)
O40.104 (3)0.091 (3)0.107 (3)0.038 (2)0.002 (2)0.005 (2)
N10.0351 (13)0.0263 (12)0.0310 (12)0.0002 (10)0.0080 (10)0.0118 (10)
N20.0408 (14)0.0289 (12)0.0397 (14)0.0025 (10)0.0136 (11)0.0183 (11)
N30.0336 (13)0.0342 (13)0.0441 (15)0.0026 (10)0.0057 (11)0.0162 (11)
N40.0381 (14)0.0330 (13)0.0433 (15)0.0018 (11)0.0092 (11)0.0155 (12)
N50.0445 (14)0.0261 (12)0.0295 (13)0.0005 (10)0.0091 (11)0.0103 (10)
N60.0473 (15)0.0330 (13)0.0338 (14)0.0022 (11)0.0054 (11)0.0085 (11)
N70.071 (2)0.0506 (18)0.0563 (19)0.0094 (16)0.0230 (17)0.0175 (16)
N80.086 (3)0.064 (2)0.064 (2)0.0160 (19)0.0347 (19)0.0300 (18)
C10.0423 (17)0.0323 (15)0.0371 (16)0.0015 (13)0.0144 (13)0.0140 (13)
C20.0447 (18)0.0357 (16)0.0486 (18)0.0006 (14)0.0164 (14)0.0228 (15)
C30.053 (2)0.0424 (19)0.064 (2)0.0020 (16)0.0183 (18)0.0267 (18)
C40.066 (2)0.0387 (19)0.070 (3)0.0057 (17)0.024 (2)0.0267 (18)
C50.051 (2)0.0367 (17)0.056 (2)0.0069 (15)0.0110 (16)0.0183 (16)
C60.0355 (16)0.0337 (16)0.0398 (17)0.0008 (13)0.0064 (13)0.0123 (13)
C70.050 (2)0.0391 (18)0.054 (2)0.0009 (15)0.0135 (16)0.0217 (16)
C80.0463 (18)0.0332 (16)0.0357 (16)0.0015 (13)0.0133 (13)0.0135 (13)
C90.054 (2)0.0306 (16)0.0377 (17)0.0075 (14)0.0097 (14)0.0073 (13)
C100.078 (3)0.064 (3)0.046 (2)0.000 (2)0.0054 (19)0.0201 (19)
C110.084 (3)0.064 (3)0.049 (2)0.021 (2)0.001 (2)0.024 (2)
C120.088 (3)0.052 (2)0.087 (3)0.001 (2)0.020 (3)0.027 (2)
C130.065 (2)0.0404 (19)0.053 (2)0.0016 (17)0.0184 (18)0.0126 (17)
C140.071 (3)0.054 (2)0.062 (2)0.004 (2)0.020 (2)0.025 (2)
Geometric parameters (Å, °) top
Cu1—N1i2.021 (2)N3—N41.390 (4)
Cu1—N12.021 (2)N4—C71.293 (4)
Cu1—N5i2.053 (2)N4—Cu1iv2.445 (3)
Cu1—N52.053 (2)N5—C81.299 (4)
Cu1—N4ii2.445 (3)N5—N61.375 (3)
Cu1—N4iii2.445 (3)N6—C91.304 (4)
Cl1—O21.370 (4)N7—C131.291 (5)
Cl1—O41.398 (4)N7—N81.387 (5)
Cl1—O31.404 (3)N8—C141.271 (5)
Cl1—O11.400 (4)C1—H10.9300
S1—C11.696 (3)C3—C41.517 (5)
S1—C21.735 (3)C3—H3A0.9700
S2—C21.727 (3)C3—H3B0.9700
S2—C31.806 (4)C4—C51.514 (5)
S3—C61.746 (3)C4—H4A0.9700
S3—C51.815 (4)C4—H4B0.9700
S4—C71.714 (4)C5—H5A0.9700
S4—C61.735 (3)C5—H5B0.9700
S5—C81.695 (3)C7—H70.9300
S5—C91.719 (3)C8—H80.9300
S6—C91.767 (3)C10—C111.530 (6)
S6—C101.829 (5)C10—H10A0.9700
S7—C131.742 (4)C10—H10B0.9700
S7—C121.816 (5)C11—C121.483 (6)
S8—C141.703 (4)C11—H11A0.9700
S8—C131.727 (4)C11—H11B0.9700
N1—C11.293 (4)C12—H12A0.9700
N1—N21.388 (3)C12—H12B0.9700
N2—C21.302 (4)C14—H140.9300
N3—C61.299 (4)
N1i—Cu1—N1180.0C4—C3—H3B110.5
N1i—Cu1—N5i88.01 (9)S2—C3—H3B110.5
N1—Cu1—N5i91.99 (9)H3A—C3—H3B108.7
N1i—Cu1—N591.99 (9)C3—C4—C5112.1 (3)
N1—Cu1—N588.01 (9)C3—C4—H4A109.2
N5i—Cu1—N5180.0C5—C4—H4A109.2
N1i—Cu1—N4ii91.50 (9)C3—C4—H4B109.2
N1—Cu1—N4ii88.50 (9)C5—C4—H4B109.2
N5i—Cu1—N4ii87.34 (9)H4A—C4—H4B107.9
N5—Cu1—N4ii92.66 (9)C4—C5—S3111.8 (3)
N1i—Cu1—N4iii88.50 (9)C4—C5—H5A109.3
N1—Cu1—N4iii91.50 (9)S3—C5—H5A109.3
N5i—Cu1—N4iii92.66 (9)C4—C5—H5B109.3
N5—Cu1—N4iii87.34 (9)S3—C5—H5B109.3
N4ii—Cu1—N4iii180.0H5A—C5—H5B107.9
O2—Cl1—O4108.6 (4)N3—C6—S4114.1 (2)
O2—Cl1—O3110.1 (3)N3—C6—S3125.0 (2)
O4—Cl1—O3107.8 (2)S4—C6—S3120.83 (18)
O2—Cl1—O1108.9 (3)N4—C7—S4114.8 (3)
O4—Cl1—O1109.3 (3)N4—C7—H7122.6
O3—Cl1—O1112.2 (3)S4—C7—H7122.6
C1—S1—C286.96 (14)N5—C8—S5113.6 (2)
C2—S2—C3103.64 (16)N5—C8—H8123.2
C6—S3—C5101.32 (16)S5—C8—H8123.2
C7—S4—C686.73 (16)N6—C9—S5114.4 (2)
C8—S5—C987.49 (15)N6—C9—S6122.9 (3)
C9—S6—C1099.43 (18)S5—C9—S6122.70 (18)
C13—S7—C12102.4 (2)C11—C10—S6115.4 (3)
C14—S8—C1386.78 (19)C11—C10—H10A108.4
C1—N1—N2113.7 (2)S6—C10—H10A108.4
C1—N1—Cu1124.3 (2)C11—C10—H10B108.4
N2—N1—Cu1121.73 (17)S6—C10—H10B108.4
C2—N2—N1110.3 (2)H10A—C10—H10B107.5
C6—N3—N4111.9 (2)C12—C11—C10111.8 (4)
C7—N4—N3112.5 (3)C12—C11—H11A109.2
C7—N4—Cu1iv133.3 (2)C10—C11—H11A109.2
N3—N4—Cu1iv109.59 (17)C12—C11—H11B109.2
C8—N5—N6113.8 (2)C10—C11—H11B109.2
C8—N5—Cu1128.7 (2)H11A—C11—H11B107.9
N6—N5—Cu1117.31 (18)C11—C12—S7115.4 (4)
C9—N6—N5110.7 (3)C11—C12—H12A108.4
C13—N7—N8111.7 (3)S7—C12—H12A108.4
C14—N8—N7112.8 (3)C11—C12—H12B108.4
N1—C1—S1114.4 (2)S7—C12—H12B108.4
N1—C1—H1122.8H12A—C12—H12B107.5
S1—C1—H1122.8N7—C13—S8113.8 (3)
N2—C2—S2127.1 (2)N7—C13—S7126.1 (3)
N2—C2—S1114.6 (2)S8—C13—S7120.0 (2)
S2—C2—S1118.30 (18)N8—C14—S8114.9 (3)
C4—C3—S2106.2 (2)N8—C14—H14122.5
C4—C3—H3A110.5S8—C14—H14122.5
S2—C3—H3A110.5
N5i—Cu1—N1—C1137.6 (3)S2—C3—C4—C5175.9 (3)
N5—Cu1—N1—C142.4 (3)C3—C4—C5—S3163.0 (3)
N4ii—Cu1—N1—C150.3 (3)C6—S3—C5—C474.5 (3)
N4iii—Cu1—N1—C1129.7 (3)N4—N3—C6—S40.6 (3)
N5i—Cu1—N1—N236.6 (2)N4—N3—C6—S3178.9 (2)
N5—Cu1—N1—N2143.4 (2)C7—S4—C6—N30.2 (3)
N4ii—Cu1—N1—N2123.9 (2)C7—S4—C6—S3178.5 (2)
N4iii—Cu1—N1—N256.1 (2)C5—S3—C6—N312.7 (3)
C1—N1—N2—C20.6 (4)C5—S3—C6—S4169.1 (2)
Cu1—N1—N2—C2174.2 (2)N3—N4—C7—S40.7 (4)
C6—N3—N4—C70.8 (4)Cu1iv—N4—C7—S4151.87 (18)
C6—N3—N4—Cu1iv158.3 (2)C6—S4—C7—N40.3 (3)
N1i—Cu1—N5—C865.1 (3)N6—N5—C8—S50.5 (3)
N1—Cu1—N5—C8114.9 (3)Cu1—N5—C8—S5173.93 (14)
N4ii—Cu1—N5—C826.5 (3)C9—S5—C8—N50.4 (3)
N4iii—Cu1—N5—C8153.5 (3)N5—N6—C9—S50.1 (3)
N1i—Cu1—N5—N6120.6 (2)N5—N6—C9—S6178.9 (2)
N1—Cu1—N5—N659.4 (2)C8—S5—C9—N60.1 (3)
N4ii—Cu1—N5—N6147.8 (2)C8—S5—C9—S6179.1 (2)
N4iii—Cu1—N5—N632.2 (2)C10—S6—C9—N678.7 (3)
C8—N5—N6—C90.4 (4)C10—S6—C9—S5100.2 (2)
Cu1—N5—N6—C9174.7 (2)C9—S6—C10—C1169.0 (3)
C13—N7—N8—C140.8 (6)S6—C10—C11—C1266.9 (4)
N2—N1—C1—S10.6 (3)C10—C11—C12—S7171.5 (3)
Cu1—N1—C1—S1174.06 (14)C13—S7—C12—C1183.7 (4)
C2—S1—C1—N10.3 (3)N8—N7—C13—S80.6 (5)
N1—N2—C2—S2179.2 (2)N8—N7—C13—S7179.1 (3)
N1—N2—C2—S10.4 (3)C14—S8—C13—N70.2 (4)
C3—S2—C2—N21.0 (4)C14—S8—C13—S7178.8 (3)
C3—S2—C2—S1177.8 (2)C12—S7—C13—N711.3 (5)
C1—S1—C2—N20.1 (3)C12—S7—C13—S8167.1 (3)
C1—S1—C2—S2179.0 (2)N7—N8—C14—S80.6 (5)
C2—S2—C3—C4166.7 (3)C13—S8—C14—N80.2 (4)
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O3v0.972.473.357 (6)153
C7—H7···O3vi0.932.513.172 (6)128
C8—H8···O4iii0.932.473.010 (6)117
C10—H10A···O2vii0.972.503.423 (7)159
C14—H14···O1viii0.932.513.419 (7)167
Symmetry codes: (v) x−1, y, z; (vi) x−1, y+1, z; (iii) x, y−1, z; (vii) −x+1, −y, −z+2; (viii) −x+1, −y+1, −z+2.
Table 1
Selected geometric parameters (Å)
top
Cu1—N12.021 (2)Cu1—N4i2.445 (3)
Cu1—N52.053 (2)
Symmetry codes: (i) x, y−1, z.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O3ii0.972.473.357 (6)153
C7—H7···O3iii0.932.513.172 (6)128
C8—H8···O4i0.932.473.010 (6)117
C10—H10A···O2iv0.972.503.423 (7)159
C14—H14···O1v0.932.513.419 (7)167
Symmetry codes: (ii) x−1, y, z; (iii) x−1, y+1, z; (i) x, y−1, z; (iv) −x+1, −y, −z+2; (v) −x+1, −y+1, −z+2.
Acknowledgements top

The authors thank Luoyang Normal University for supporting this work.

references
References top

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Huang, H.-M., Ju, F.-Y., Wang, J.-G. & Qin, J.-H. (2009). Acta Cryst. E65, m80–m81.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, J. G., Qin, J. H., Hu, P. Z. & Zhao, B. T. (2008). Z. Kristallogr. New Cryst, Struct. 223, 225–227.