organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(2-fluoro­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 3 June 2009; accepted 10 June 2009; online 17 June 2009)

The title compound, C20H19F2NO, exists in a twin-chair conformation with an equatorial orientation of the two 2-fluoro­phenyl groups on both sides of the secondary amine group. The benzene rings are orientated at an angle of 25.68 (4)° with respect to one another and the F atoms point upwards (towards the carbonyl group). The crystal is stabilized by an inter­molecular N—H⋯π inter­action.

Related literature

3-Aza­bicyclo­nona­nes are present in numerous naturally occurring diterpenoid/norditerpenoid alkaloids and display broad-spectrum biological activity, see: Hardick et al. (1996[Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860-4866.]); Jeyaraman et al. (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]); For related structures, see: Parthiban et al. (2008a[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.],b[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.], 2009[Parthiban, P., Ramkumar, V., Kim, M. S., Kabilan, S. & Jeong, Y. T. (2009). Acta Cryst. E65, o609.]); Parthiban, Ramkumar, Kim et al. (2008[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, o2385.]); Parthiban, Ramkumar, Santan et al. (2008[Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1710.]); Parthiban, Thirumurugan et al. (2008[Parthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008). Acta Cryst. E64, o1708-o1709.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19F2NO

  • Mr = 327.36

  • Triclinic, [P \overline 1]

  • a = 7.4699 (3) Å

  • b = 10.6621 (4) Å

  • c = 10.7131 (4) Å

  • α = 78.027 (2)°

  • β = 78.946 (2)°

  • γ = 87.201 (2)°

  • V = 819.16 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.42 × 0.38 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.989

  • 11219 measured reflections

  • 3913 independent reflections

  • 2564 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.156

  • S = 0.81

  • 3913 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1ACgi 0.90 (4) 2.72 (2) 3.58 (16) 167.3 (19)
Symmetry code: (i) -x, -y, -z+2. Cg is the centroid of C9–C14 phenyl ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-Azabicyclononanes are important class of heterocycles due to their presence in numerous naturally occurring diterpenoid/norditerpenoid alkaloids and broad spectrum biological activities (Jeyaraman & Avila, 1981; Hardick et al., 1996). Since the stereochemistry plays crucial role in exploiting biological activities, it is essential to establish the stereochemistry of the bio-active molecules. Irrespective of the nature and position of the substituents on the phenyl, similar compounds show twin-chair conformation (Parthiban et al. (2008a,b, 2009; Parthiban, Ramkumar, Kim et al. (2008), Parthiban, Ramkumar, Santan et al., 2008; ; Parthiban, Thirumurugan et al.,2008). However, to explore the impact of fluorine atom, substituted at ortho position of the phenyl groups on both sides of the hetero atom, we have carried out the single-crystal x-ray diffraction study for the title compound.

The title compound C20H19F2NO, (I), exists in twin-chair conformation with equatorial orientation of the ortho-fluorophenyl group on both sides of the secondary amino group with the torsion angle of C8—C2—C1—C9 and C8—C6—C7—C15 as 179.99 (3) and 179.48 (4)°, respectively. The aryl groups are orientated at an angle of 25.68 (4)° to each other. In both aryl groups, the F atom is pointed towards the carbonyl group (Figure 1.). Analysis of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.654 (3) Å and 0.696 (3) Å, respectively; QT = 0.6002 (18) Å, q(2)= 0.0242 (17) Å, q(3)=-0.5996 (18) Å, θ = 177.54 (16)° whereas the cyclohexane ring atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.529 (4) Å and 0.727 (3) Å, respectively; QT = 0.565 (2) Å, q(2)= 0.146 (2) Å, q(3)= -0.546 (2) Å, θ = 165.1 (2)° (Cremer & Pople, 1975). Hence, the title compound (I) shows appreciable deviation from the ideal chair conformation of the cyclohexane moiety. The crystal structure is stabilized by intermolecular N—H···π interaction (Figure 2.).

Related literature top

3-Azabicyclononanes are present in numerous naturally occurring diterpenoid/norditerpenoid alkaloids and display broad-spectrum biological activity, see: Hardick et al. (1996); Jeyaraman et al. (1981); For related structures, see: Parthiban et al. (2008a,b, 2009); Parthiban, Ramkumar, Kim et al. (2008); Parthiban, Ramkumar, Santan et al. (2008); Parthiban, Thirumurugan et al. (2008). For puckering parameters, see: Cremer & Pople (1975). Cg is the centroid of C9–C14 phenyl ring.

Experimental top

A mixture of cyclohexanone (0.025 mol, 2.45 g) and ortho-fluorobenzaldehyde (0.05 mol, 6.21 g) was added to a warm solution of ammonium acetate (0.04 mol, 3.08 g) in 30 ml of absolute ethanol. The mixture was gently warmed with stirring till the yellow color was formed during the mixing of the reactants and then stirred at room temperature up to the formation of product. At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture to remove the coloring impurities. Recrystallization of the compound from acetone gave X-ray diffraction quality crystals of 2,4-bis(2-fluorophenyl)-3-azabicyclo[3.3.1]nonan-9-one.

Refinement top

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H =0.93 Å, aliphatic C—H = 0.98 Å and methylen C—H = 0.97 Å. The displacement parameters were set for phenyl, methylen and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of title compound showing N—H···π interaction
2,4-Bis(2-fluorophenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C20H19F2NOZ = 2
Mr = 327.36F(000) = 344
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4699 (3) ÅCell parameters from 3420 reflections
b = 10.6621 (4) Åθ = 2.5–27.4°
c = 10.7131 (4) ŵ = 0.10 mm1
α = 78.027 (2)°T = 298 K
β = 78.946 (2)°Block, colourless
γ = 87.201 (2)°0.42 × 0.38 × 0.12 mm
V = 819.16 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3913 independent reflections
Radiation source: fine-focus sealed tube2564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 99
Tmin = 0.960, Tmax = 0.989k = 1414
11219 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.1P)2 + 0.2685P]
where P = (Fo2 + 2Fc2)/3
3913 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H19F2NOγ = 87.201 (2)°
Mr = 327.36V = 819.16 (5) Å3
Triclinic, P1Z = 2
a = 7.4699 (3) ÅMo Kα radiation
b = 10.6621 (4) ŵ = 0.10 mm1
c = 10.7131 (4) ÅT = 298 K
α = 78.027 (2)°0.42 × 0.38 × 0.12 mm
β = 78.946 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3913 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2564 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.989Rint = 0.021
11219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.17 e Å3
3913 reflectionsΔρmin = 0.20 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2684 (2)0.16060 (16)0.96799 (14)0.0419 (4)
H10.34990.08690.95850.050*
C20.3813 (2)0.27242 (18)0.98432 (15)0.0481 (4)
H20.44080.24311.05940.058*
C30.2715 (3)0.39499 (18)1.00204 (17)0.0546 (5)
H3A0.16940.37301.07340.066*
H3B0.34850.45321.02610.066*
C40.1990 (3)0.46430 (18)0.88289 (19)0.0595 (5)
H4A0.16070.55020.89410.071*
H4B0.09250.41960.87580.071*
C50.3381 (3)0.47348 (18)0.75758 (18)0.0591 (5)
H5A0.42430.54030.75260.071*
H5B0.27550.49870.68470.071*
C60.4445 (2)0.34774 (19)0.74473 (16)0.0506 (4)
H60.54330.36510.66890.061*
C70.3290 (2)0.23549 (16)0.73240 (14)0.0431 (4)
H70.41010.16160.72340.052*
C80.5261 (2)0.3061 (2)0.86420 (17)0.0540 (5)
C90.1194 (2)0.12155 (15)1.08599 (14)0.0397 (4)
C100.0618 (2)0.15942 (16)1.08968 (16)0.0463 (4)
H100.09710.20741.01530.056*
C110.1906 (3)0.12692 (19)1.20224 (18)0.0560 (5)
H110.31110.15351.20260.067*
C120.1423 (3)0.05585 (19)1.31351 (17)0.0595 (5)
H120.22940.03551.38910.071*
C130.0352 (3)0.01505 (18)1.31262 (16)0.0569 (5)
H130.06930.03471.38660.068*
C140.1613 (2)0.04921 (16)1.20018 (15)0.0470 (4)
C150.2390 (2)0.26888 (15)0.61458 (14)0.0415 (4)
C160.3352 (2)0.25928 (19)0.49306 (16)0.0524 (4)
C170.2607 (3)0.2853 (2)0.38267 (16)0.0638 (5)
H170.33060.27670.30310.077*
C180.0817 (3)0.3240 (2)0.39162 (17)0.0641 (5)
H180.02890.34190.31800.077*
C190.0185 (3)0.3362 (2)0.50969 (18)0.0586 (5)
H190.13960.36300.51580.070*
C200.0587 (2)0.30888 (17)0.62043 (15)0.0483 (4)
H200.01160.31760.69980.058*
F10.33764 (16)0.01112 (12)1.20093 (11)0.0726 (4)
F20.51212 (16)0.21980 (16)0.48284 (11)0.0853 (4)
N10.19010 (18)0.19950 (13)0.85064 (11)0.0397 (3)
O10.68765 (18)0.30314 (19)0.86537 (14)0.0831 (5)
H1A0.129 (3)0.1358 (19)0.8399 (17)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (9)0.0502 (9)0.0351 (7)0.0105 (7)0.0090 (6)0.0071 (6)
C20.0358 (9)0.0718 (12)0.0383 (8)0.0009 (8)0.0129 (7)0.0095 (7)
C30.0525 (11)0.0631 (11)0.0508 (9)0.0147 (8)0.0022 (8)0.0209 (8)
C40.0605 (12)0.0489 (10)0.0693 (12)0.0008 (8)0.0086 (9)0.0159 (9)
C50.0642 (13)0.0551 (11)0.0563 (10)0.0146 (9)0.0138 (9)0.0020 (8)
C60.0322 (9)0.0761 (12)0.0394 (8)0.0063 (8)0.0011 (6)0.0058 (8)
C70.0383 (9)0.0550 (9)0.0346 (7)0.0099 (7)0.0049 (6)0.0096 (6)
C80.0326 (9)0.0790 (13)0.0511 (9)0.0024 (8)0.0082 (7)0.0138 (9)
C90.0453 (9)0.0394 (8)0.0346 (7)0.0037 (6)0.0101 (6)0.0068 (6)
C100.0446 (10)0.0486 (9)0.0438 (8)0.0023 (7)0.0109 (7)0.0035 (7)
C110.0452 (10)0.0608 (11)0.0579 (10)0.0033 (8)0.0012 (8)0.0098 (8)
C120.0694 (14)0.0598 (11)0.0437 (9)0.0146 (10)0.0050 (8)0.0087 (8)
C130.0797 (14)0.0511 (10)0.0377 (8)0.0041 (9)0.0130 (8)0.0011 (7)
C140.0542 (11)0.0456 (9)0.0423 (8)0.0080 (7)0.0159 (7)0.0064 (7)
C150.0440 (9)0.0463 (9)0.0330 (7)0.0007 (7)0.0048 (6)0.0073 (6)
C160.0469 (10)0.0682 (12)0.0413 (8)0.0012 (8)0.0013 (7)0.0152 (8)
C170.0727 (14)0.0846 (14)0.0337 (8)0.0122 (11)0.0027 (8)0.0149 (8)
C180.0746 (14)0.0775 (14)0.0419 (9)0.0108 (11)0.0218 (9)0.0032 (9)
C190.0521 (11)0.0728 (13)0.0504 (10)0.0027 (9)0.0182 (8)0.0036 (8)
C200.0469 (10)0.0581 (10)0.0377 (8)0.0034 (8)0.0067 (7)0.0068 (7)
F10.0669 (8)0.0863 (9)0.0600 (7)0.0256 (6)0.0257 (6)0.0019 (6)
F20.0542 (7)0.1445 (13)0.0570 (7)0.0195 (7)0.0026 (5)0.0363 (7)
N10.0402 (8)0.0478 (8)0.0312 (6)0.0022 (6)0.0083 (5)0.0062 (5)
O10.0315 (8)0.1455 (16)0.0696 (9)0.0015 (8)0.0105 (6)0.0143 (9)
Geometric parameters (Å, º) top
C1—N11.4617 (19)C9—C141.386 (2)
C1—C91.516 (2)C9—C101.389 (2)
C1—C21.551 (3)C10—C111.384 (2)
C1—H10.9800C10—H100.9300
C2—C81.506 (2)C11—C121.374 (3)
C2—C31.535 (3)C11—H110.9300
C2—H20.9800C12—C131.374 (3)
C3—C41.518 (3)C12—H120.9300
C3—H3A0.9700C13—C141.374 (2)
C3—H3B0.9700C13—H130.9300
C4—C51.520 (3)C14—F11.361 (2)
C4—H4A0.9700C15—C161.382 (2)
C4—H4B0.9700C15—C201.386 (2)
C5—C61.542 (3)C16—F21.358 (2)
C5—H5A0.9700C16—C171.373 (3)
C5—H5B0.9700C17—C181.371 (3)
C6—C81.498 (2)C17—H170.9300
C6—C71.550 (3)C18—C191.368 (3)
C6—H60.9800C18—H180.9300
C7—N11.4703 (19)C19—C201.388 (2)
C7—C151.513 (2)C19—H190.9300
C7—H70.9800C20—H200.9300
C8—O11.208 (2)N1—H1A0.88 (2)
N1—C1—C9110.56 (13)O1—C8—C6124.57 (16)
N1—C1—C2109.45 (13)O1—C8—C2123.79 (16)
C9—C1—C2110.71 (13)C6—C8—C2111.61 (14)
N1—C1—H1108.7C14—C9—C10116.13 (14)
C9—C1—H1108.7C14—C9—C1120.38 (14)
C2—C1—H1108.7C10—C9—C1123.42 (13)
C8—C2—C3107.64 (15)C11—C10—C9121.07 (15)
C8—C2—C1107.86 (14)C11—C10—H10119.5
C3—C2—C1114.94 (14)C9—C10—H10119.5
C8—C2—H2108.8C12—C11—C10120.71 (18)
C3—C2—H2108.8C12—C11—H11119.6
C1—C2—H2108.8C10—C11—H11119.6
C4—C3—C2114.55 (14)C13—C12—C11119.71 (16)
C4—C3—H3A108.6C13—C12—H12120.1
C2—C3—H3A108.6C11—C12—H12120.1
C4—C3—H3B108.6C14—C13—C12118.66 (16)
C2—C3—H3B108.6C14—C13—H13120.7
H3A—C3—H3B107.6C12—C13—H13120.7
C3—C4—C5113.26 (16)F1—C14—C13118.33 (15)
C3—C4—H4A108.9F1—C14—C9117.96 (15)
C5—C4—H4A108.9C13—C14—C9123.70 (16)
C3—C4—H4B108.9C16—C15—C20116.11 (15)
C5—C4—H4B108.9C16—C15—C7120.57 (15)
H4A—C4—H4B107.7C20—C15—C7123.31 (13)
C4—C5—C6114.00 (15)F2—C16—C17118.29 (15)
C4—C5—H5A108.8F2—C16—C15118.14 (15)
C6—C5—H5A108.8C17—C16—C15123.57 (17)
C4—C5—H5B108.8C18—C17—C16118.98 (16)
C6—C5—H5B108.8C18—C17—H17120.5
H5A—C5—H5B107.6C16—C17—H17120.5
C8—C6—C5107.17 (15)C19—C18—C17119.53 (17)
C8—C6—C7107.89 (15)C19—C18—H18120.2
C5—C6—C7115.27 (14)C17—C18—H18120.2
C8—C6—H6108.8C18—C19—C20120.73 (18)
C5—C6—H6108.8C18—C19—H19119.6
C7—C6—H6108.8C20—C19—H19119.6
N1—C7—C15110.02 (13)C15—C20—C19121.07 (15)
N1—C7—C6109.92 (13)C15—C20—H20119.5
C15—C7—C6111.89 (13)C19—C20—H20119.5
N1—C7—H7108.3C1—N1—C7112.94 (12)
C15—C7—H7108.3C1—N1—H1A109.7 (12)
C6—C7—H7108.3C7—N1—H1A106.9 (12)
N1—C1—C2—C857.90 (16)C9—C10—C11—C120.1 (3)
C9—C1—C2—C8179.98 (13)C10—C11—C12—C130.9 (3)
N1—C1—C2—C362.16 (17)C11—C12—C13—C141.4 (3)
C9—C1—C2—C359.96 (17)C12—C13—C14—F1178.41 (16)
C8—C2—C3—C452.2 (2)C12—C13—C14—C90.9 (3)
C1—C2—C3—C468.03 (19)C10—C9—C14—F1179.44 (15)
C2—C3—C4—C543.7 (2)C1—C9—C14—F12.3 (2)
C3—C4—C5—C644.4 (2)C10—C9—C14—C130.1 (3)
C4—C5—C6—C853.8 (2)C1—C9—C14—C13177.01 (16)
C4—C5—C6—C766.3 (2)N1—C7—C15—C16155.80 (16)
C8—C6—C7—N156.93 (17)C6—C7—C15—C1681.71 (19)
C5—C6—C7—N162.77 (17)N1—C7—C15—C2023.5 (2)
C8—C6—C7—C15179.48 (13)C6—C7—C15—C2098.96 (18)
C5—C6—C7—C1559.78 (17)C20—C15—C16—F2179.68 (16)
C5—C6—C8—O1113.1 (2)C7—C15—C16—F20.3 (3)
C7—C6—C8—O1122.2 (2)C20—C15—C16—C170.9 (3)
C5—C6—C8—C264.94 (19)C7—C15—C16—C17178.47 (18)
C7—C6—C8—C259.75 (19)F2—C16—C17—C18179.38 (18)
C3—C2—C8—O1113.9 (2)C15—C16—C17—C180.6 (3)
C1—C2—C8—O1121.6 (2)C16—C17—C18—C190.1 (3)
C3—C2—C8—C664.20 (19)C17—C18—C19—C200.4 (3)
C1—C2—C8—C660.36 (19)C16—C15—C20—C190.5 (3)
N1—C1—C9—C14162.27 (15)C7—C15—C20—C19178.81 (17)
C2—C1—C9—C1476.27 (19)C18—C19—C20—C150.1 (3)
N1—C1—C9—C1020.8 (2)C9—C1—N1—C7178.60 (13)
C2—C1—C9—C10100.64 (18)C2—C1—N1—C759.20 (17)
C14—C9—C10—C110.6 (2)C15—C7—N1—C1177.51 (13)
C1—C9—C10—C11176.38 (16)C6—C7—N1—C158.84 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cgi0.90 (4)2.72 (2)3.58 (16)167.3 (19)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H19F2NO
Mr327.36
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4699 (3), 10.6621 (4), 10.7131 (4)
α, β, γ (°)78.027 (2), 78.946 (2), 87.201 (2)
V3)819.16 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.38 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.960, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11219, 3913, 2564
Rint0.021
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.156, 0.81
No. of reflections3913
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cgi0.90 (4)2.72 (2)3.58 (16)167.3 (19)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Kabilan, S. & Jeong, Y. T. (2009). Acta Cryst. E65, o609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008). Acta Cryst. E64, o1708–o1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds