organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,4-Di­chloro­benzyl­­idene)-4-meth­oxy­benzohydrazide methanol solvate

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China, and bCollege of Life Science and Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: liangmin09@163.com

(Received 11 June 2009; accepted 12 June 2009; online 17 June 2009)

In the title compound, C15H12Cl2N2O2·CH3OH, the hydrazone mol­ecule displays an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 4.6 (2)°. In the crystal structure, the hydrazone and methanol mol­ecules are linked into a chain propagating along the a axis via N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the biological properties of hydrazone compounds, see: Küçükgüzel et al. (2003[Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]); Charkoudian et al. (2007[Charkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031-5042.]). For the crystal structures of hydrazone compounds, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.]); Ren (2009[Ren, C.-G. (2009). Acta Cryst. E65, o1503-o1504.]); Zhang (2009[Zhang, X. (2009). Acta Cryst. E65, o1388.]). For related structures, see: Wu (2009[Wu, H.-Y. (2009). Acta Cryst. E65, o852.]); Peng & Hou (2008[Peng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2N2O2·CH4O

  • Mr = 355.21

  • Triclinic, [P \overline 1]

  • a = 6.7401 (11) Å

  • b = 8.9583 (14) Å

  • c = 14.567 (2) Å

  • α = 75.085 (2)°

  • β = 81.570 (2)°

  • γ = 83.445 (2)°

  • V = 838.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.931

  • 4896 measured reflections

  • 3557 independent reflections

  • 2461 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.128

  • S = 1.03

  • 3557 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.893 (10) 2.013 (12) 2.889 (3) 167 (3)
O3—H3⋯O1ii 0.82 1.99 2.780 (2) 163
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z-1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones possess excellent antibacterial, antifungal, and antitumor activities (Küçükgüzel et al., 2003; Charkoudian et al., 2007). Recently, the crystal structures of some hydrazone compounds have been reported (Fun et al., 2008; Lo & Ng, 2009; Ren, 2009; Zhang, 2009). We report herein the crystal structure of the title new hydrazone compound.

The asymmetric unit of the title compound contains a hydrazone molecule and a methanol molecule. In the hydrazone molecule, the dihedral angle between the two benzene rings is 4.6 (2)°. The hydrazone molecule exists in an E configuration with respect to the methylidene group. All the bond lengths are normal and comparable to those in similar hydrazone compounds (Wu, 2009; Peng & Hou, 2008; Mohd Lair et al., 2009).

In the crystal structure of the title compound, the hydrazone molecules are linked by the methanol molecules through N—H···O and O—H···O hydrogen bonds (Table 1), forming chains propagating along the a axis (Fig. 2).

Related literature top

For the biological properties of hydrazone compounds, see: Küçükgüzel et al. (2003); Charkoudian et al. (2007). For the crystal structures of hydrazone compounds, see: Fun et al. (2008); Lo & Ng (2009); Ren (2009); Zhang (2009). For related structures, see: Wu (2009); Peng & Hou (2008); Mohd Lair et al. (2009).

Experimental top

Equimolar quantities (1.0 mmol each) of 2,4-dichlorobenzaldehyde and 4-methoxybenzohydrazide were mixed and refluxed in methanol. The reaction mixture was cooled to room temperature to give a clear colourless solution. Colourless single crystals of the title compound were formed by slow evaporation of the solution in air.

Refinement top

Atom H2 was located in a difference map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions (C—H = 0.93–0.96 Å and O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O,Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids for the non-H atoms. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram, viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
N'-(2,4-Dichlorobenzylidene)-4-methoxybenzohydrazide methanol solvate top
Crystal data top
C15H12Cl2N2O2·CH4OZ = 2
Mr = 355.21F(000) = 368
Triclinic, P1Dx = 1.408 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7401 (11) ÅCell parameters from 1307 reflections
b = 8.9583 (14) Åθ = 2.3–26.7°
c = 14.567 (2) ŵ = 0.40 mm1
α = 75.085 (2)°T = 298 K
β = 81.570 (2)°Block, colourless
γ = 83.445 (2)°0.20 × 0.18 × 0.18 mm
V = 838.1 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3557 independent reflections
Radiation source: fine-focus sealed tube2461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.924, Tmax = 0.931k = 1111
4896 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.048P)2 + 0.3404P]
where P = (Fo2 + 2Fc2)/3
3557 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C15H12Cl2N2O2·CH4Oγ = 83.445 (2)°
Mr = 355.21V = 838.1 (2) Å3
Triclinic, P1Z = 2
a = 6.7401 (11) ÅMo Kα radiation
b = 8.9583 (14) ŵ = 0.40 mm1
c = 14.567 (2) ÅT = 298 K
α = 75.085 (2)°0.20 × 0.18 × 0.18 mm
β = 81.570 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3557 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2461 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.931Rint = 0.017
4896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
3557 reflectionsΔρmin = 0.31 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24871 (10)0.73959 (10)1.31319 (5)0.0692 (2)
Cl20.81448 (12)0.99939 (9)1.42996 (5)0.0719 (3)
N10.6168 (3)0.8075 (2)1.04117 (13)0.0442 (5)
N20.5388 (3)0.7708 (2)0.96816 (13)0.0451 (5)
O10.8442 (2)0.7876 (2)0.88034 (12)0.0582 (5)
O20.4029 (3)0.5972 (2)0.58129 (13)0.0661 (5)
O30.1098 (3)0.7492 (2)0.01521 (13)0.0613 (5)
H30.01830.77370.01850.092*
C10.5714 (3)0.8617 (3)1.19309 (16)0.0415 (5)
C20.4710 (3)0.8331 (3)1.28613 (17)0.0451 (6)
C30.5433 (4)0.8734 (3)1.35947 (17)0.0502 (6)
H3A0.47480.85231.42100.060*
C40.7199 (4)0.9456 (3)1.33905 (17)0.0501 (6)
C50.8244 (4)0.9770 (3)1.24829 (17)0.0506 (6)
H50.94321.02621.23570.061*
C60.7498 (4)0.9343 (3)1.17690 (17)0.0469 (6)
H60.82050.95441.11580.056*
C70.4950 (4)0.8199 (3)1.11445 (16)0.0462 (6)
H70.36010.80291.11830.055*
C80.6669 (3)0.7618 (3)0.88846 (16)0.0416 (5)
C90.5841 (3)0.7173 (3)0.81095 (15)0.0411 (5)
C100.6995 (4)0.7383 (3)0.72207 (17)0.0490 (6)
H100.82260.78090.71300.059*
C110.6354 (4)0.6974 (3)0.64766 (17)0.0553 (7)
H110.71480.71290.58870.066*
C120.4530 (4)0.6333 (3)0.65966 (17)0.0487 (6)
C130.3364 (4)0.6112 (3)0.74703 (18)0.0557 (7)
H130.21350.56850.75590.067*
C140.4030 (4)0.6528 (3)0.82198 (17)0.0542 (7)
H140.32380.63700.88100.065*
C150.2166 (5)0.5339 (4)0.5880 (2)0.0752 (9)
H15A0.20990.44150.63910.113*
H15B0.20500.50920.52880.113*
H15C0.10840.60810.60080.113*
C160.0604 (5)0.6214 (3)0.0907 (2)0.0715 (8)
H16A0.17910.57530.11960.107*
H16B0.00610.54660.06660.107*
H16C0.03770.65470.13760.107*
H20.4070 (17)0.761 (3)0.973 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0488 (4)0.1016 (6)0.0583 (4)0.0229 (4)0.0003 (3)0.0181 (4)
Cl20.0865 (5)0.0888 (6)0.0534 (4)0.0131 (4)0.0237 (4)0.0297 (4)
N10.0427 (11)0.0564 (12)0.0384 (10)0.0082 (9)0.0097 (8)0.0159 (9)
N20.0362 (10)0.0655 (13)0.0396 (10)0.0100 (10)0.0066 (8)0.0202 (9)
O10.0410 (10)0.0925 (14)0.0470 (10)0.0223 (9)0.0023 (7)0.0221 (9)
O20.0677 (12)0.0936 (15)0.0495 (11)0.0154 (11)0.0066 (9)0.0365 (10)
O30.0389 (10)0.0899 (14)0.0539 (11)0.0146 (9)0.0084 (8)0.0097 (10)
C10.0419 (13)0.0438 (13)0.0402 (12)0.0003 (10)0.0089 (10)0.0120 (10)
C20.0386 (12)0.0523 (15)0.0439 (13)0.0012 (11)0.0064 (10)0.0114 (11)
C30.0509 (15)0.0626 (16)0.0381 (13)0.0006 (12)0.0054 (10)0.0158 (11)
C40.0601 (16)0.0531 (15)0.0432 (13)0.0014 (12)0.0188 (11)0.0183 (11)
C50.0531 (15)0.0544 (15)0.0494 (14)0.0124 (12)0.0117 (11)0.0152 (12)
C60.0495 (14)0.0539 (15)0.0386 (12)0.0110 (11)0.0029 (10)0.0121 (11)
C70.0399 (13)0.0586 (15)0.0442 (13)0.0076 (11)0.0088 (10)0.0164 (11)
C80.0399 (13)0.0474 (14)0.0384 (12)0.0083 (10)0.0066 (10)0.0089 (10)
C90.0392 (12)0.0472 (13)0.0384 (12)0.0056 (10)0.0057 (9)0.0116 (10)
C100.0406 (13)0.0641 (16)0.0443 (13)0.0132 (11)0.0016 (10)0.0151 (12)
C110.0531 (15)0.0764 (19)0.0391 (13)0.0106 (13)0.0034 (11)0.0216 (13)
C120.0527 (15)0.0576 (15)0.0411 (13)0.0039 (12)0.0089 (11)0.0198 (11)
C130.0486 (15)0.0778 (19)0.0495 (14)0.0240 (13)0.0027 (11)0.0251 (13)
C140.0519 (15)0.0768 (18)0.0394 (13)0.0224 (13)0.0029 (11)0.0215 (12)
C150.071 (2)0.102 (2)0.0701 (19)0.0163 (17)0.0211 (16)0.0415 (18)
C160.0693 (19)0.0626 (19)0.084 (2)0.0067 (15)0.0218 (16)0.0125 (16)
Geometric parameters (Å, º) top
Cl1—C21.745 (2)C6—H60.93
Cl2—C41.743 (2)C7—H70.93
N1—C71.268 (3)C8—C91.487 (3)
N1—N21.378 (2)C9—C141.380 (3)
N2—C81.356 (3)C9—C101.389 (3)
N2—H20.893 (10)C10—C111.369 (3)
O1—C81.226 (3)C10—H100.93
O2—C121.360 (3)C11—C121.385 (3)
O2—C151.417 (3)C11—H110.93
O3—C161.401 (3)C12—C131.374 (3)
O3—H30.82C13—C141.387 (3)
C1—C61.392 (3)C13—H130.93
C1—C21.397 (3)C14—H140.93
C1—C71.468 (3)C15—H15A0.96
C2—C31.378 (3)C15—H15B0.96
C3—C41.377 (4)C15—H15C0.96
C3—H3A0.93C16—H16A0.96
C4—C51.380 (3)C16—H16B0.96
C5—C61.373 (3)C16—H16C0.96
C5—H50.93
C7—N1—N2116.93 (19)C14—C9—C10117.8 (2)
C8—N2—N1117.23 (18)C14—C9—C8124.5 (2)
C8—N2—H2123.2 (19)C10—C9—C8117.7 (2)
N1—N2—H2119.4 (19)C11—C10—C9121.2 (2)
C12—O2—C15118.8 (2)C11—C10—H10119.4
C16—O3—H3109.5C9—C10—H10119.4
C6—C1—C2116.9 (2)C10—C11—C12120.4 (2)
C6—C1—C7120.4 (2)C10—C11—H11119.8
C2—C1—C7122.7 (2)C12—C11—H11119.8
C3—C2—C1122.3 (2)O2—C12—C13124.8 (2)
C3—C2—Cl1117.74 (19)O2—C12—C11115.8 (2)
C1—C2—Cl1119.93 (17)C13—C12—C11119.4 (2)
C4—C3—C2118.2 (2)C12—C13—C14119.7 (2)
C4—C3—H3A120.9C12—C13—H13120.2
C2—C3—H3A120.9C14—C13—H13120.2
C3—C4—C5121.8 (2)C9—C14—C13121.5 (2)
C3—C4—Cl2119.34 (19)C9—C14—H14119.2
C5—C4—Cl2118.9 (2)C13—C14—H14119.2
C6—C5—C4118.7 (2)O2—C15—H15A109.5
C6—C5—H5120.6O2—C15—H15B109.5
C4—C5—H5120.6H15A—C15—H15B109.5
C5—C6—C1122.1 (2)O2—C15—H15C109.5
C5—C6—H6119.0H15A—C15—H15C109.5
C1—C6—H6119.0H15B—C15—H15C109.5
N1—C7—C1118.6 (2)O3—C16—H16A109.5
N1—C7—H7120.7O3—C16—H16B109.5
C1—C7—H7120.7H16A—C16—H16B109.5
O1—C8—N2121.9 (2)O3—C16—H16C109.5
O1—C8—C9120.9 (2)H16A—C16—H16C109.5
N2—C8—C9117.20 (19)H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.89 (1)2.01 (1)2.889 (3)167 (3)
O3—H3···O1ii0.821.992.780 (2)163
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC15H12Cl2N2O2·CH4O
Mr355.21
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.7401 (11), 8.9583 (14), 14.567 (2)
α, β, γ (°)75.085 (2), 81.570 (2), 83.445 (2)
V3)838.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.924, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
4896, 3557, 2461
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.03
No. of reflections3557
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.893 (10)2.013 (12)2.889 (3)167 (3)
O3—H3···O1ii0.821.992.780 (2)163
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z1.
 

Acknowledgements

The authors acknowledge Qiqihar University for funding this study.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031–5042.  Web of Science CSD CrossRef Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKüçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science PubMed Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, C.-G. (2009). Acta Cryst. E65, o1503–o1504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H.-Y. (2009). Acta Cryst. E65, o852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X. (2009). Acta Cryst. E65, o1388.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds