organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

25,26,27,28-Tetra­but­oxy-5,11,17,23-tetra-tert-butyl­calix[4]arene chloro­form tetra­solvate dihydrate

aKey Laboratory of Fine Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, Jiangsu, People's Republic of China, and bGaochun County Environmental Protection Bureau, No. 5, Xuhe North Road, Chunxi Town, Gaochun city 211300, Jiangsu, People's Republic of China
*Correspondence e-mail: xqsun@jpu.edu.cn

(Received 2 May 2009; accepted 10 June 2009; online 27 June 2009)

The title compound, C60H88O4·4CHCl3·2H2O, is the alkyl­ated product of 5,11,17,23-tetra-tert-butyl­calix[4]arene. It adopts a distorted cone conformation which leads to an open cavity. All the phenolic rings are tilted so that their tert-butyl groups are pitched away from the calix cavity. Two opposite aromatic rings are close to being perpendicular to one another [dihedral angle 85.0 (2)°], while the other pair of opposite rings is almost parallel [dihedral angle 8.1 (2)°], and adjacent phenolic rings are almost perpendicular [dihedral angles 82.4 (1) or 87.9 (1)°]. In the crystal, the water molecule and calixarene interact by way of O—H⋯O hydrogen bonds.

Related literature

For calix[4]arene derivatives as supra­molecular building blocks, see: Böhmer (1995[Böhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 713-745.]); Homden & Redshaw (2008[Homden, D. M. & Redshaw, C. (2008). Chem. Rev. 108, 5086-5130.]). For related structures, see: Rathore et al. (2000[Rathore, R., Lindeman, S. V., Rao, K. S. S. P., Sun, D. & Kochi, J. K. (2000). Angew. Chem. Int. Ed. 39, 2123-2127.]) and Brusko et al. (2005[Brusko, V., Böhmer, V. & Bolte, M. (2005). Acta Cryst. E61, o4272-o4273.]). For details of the synthesis, see: Matthews et al. (1999[Matthews, S. E., Saadioui, M., Böhmer, V., Barboso, S., Arnaud-Neu, F., Schwing-Weill, M.-J., Carrera, A. G. & Dozol, J.-F. (1999). J. Prakt. Chem. 341, 264-273.]).

[Scheme 1]

Experimental

Crystal data
  • C60H88O4·4CHCl3·2H2O

  • Mr = 1386.81

  • Orthorhombic, P b c n

  • a = 23.697 (6) Å

  • b = 13.682 (6) Å

  • c = 25.402 (11) Å

  • V = 8236 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.894, Tmax = 0.917

  • 30239 measured reflections

  • 8098 independent reflections

  • 5524 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.117

  • S = 1.06

  • 8098 reflections

  • 396 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3C⋯O4 0.85 1.52 2.149 (8) 127
O5—H5C⋯O5i 0.85 1.74 2.299 (13) 121
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of calix[4]arene, as one of the most important supramolecular building blocks, are useful in ion and metal complexation because they form suitable scaffolds for the development of new bulky and structurally well defined ligands (Böhmer, 1995; Homden & Redshaw 2008). As an important approach to obtain functionalized calixarenes, alkylation of the phenolic hydroxyl groups on the lower rim of the calixarene has been widely explored. The crystal structures of propyl (Rathore et al., 2000) and pentyl (Brusko et al., 2005) alkylated calix[4]arene have been reported. We herein present the structure of the tetrabutyl substituted calix[4]arene (Fig. 1).

The title compound adopts a distorted cone conformation with a small cavity. All phenolic rings are tilted so that their tert-butyl groups are pitched away from the calix cavity, as defined by the angles which the aromatic rings make with the plane of the four bridging CH2 moieties (C29, C30, C29A and C30A) which link them, viz. 94.0 (3)° (C1–C6 or C1A–C6A) and 132.5 (1)° (C15–C20 or C15A–C15A). Two opposite aromatic rings (C15–C20 and C15A–C20A) are close to being perpendicular to one another (dihedral angle 85.0 (2)°) while the other pair of opposite phenolic rings (C1–C6 and C1A–C6A) are almost parallel (dihedral angle 8.1 (2)°), and the adjacent phenolic rings are almost perpendicular (dihedral angles 97.6 (1)° or 92.1 (1)°).

Related literature top

For calix[4]arene derivatives as supramolecular building blocks, see: Böhmer (1995); Homden & Redshaw (2008). For related structures, see: Rathore et al. (2000) and Brusko et al. (2005). For details of the synthesis, see: Matthews et al. (1999).

Experimental top

NaH (0.96 g, 40 mmol) and DMF (20 ml) were added to a suspension of 5,11,17,23-tetra(tert-butyl)calix[4]arene (3.25 g, 5 mmol) in DMF (30 ml) under argon. The suspension was stirred for 1 h, and then 1-bromobutane (5.48 g, 40 mol) was added. Stirring was continued at room temperature for 2 d. Water (100 ml) was added and the precipitate formed collected by filtration. The solid was dissolved in chloroform and washed with 15% HCl and water. The organic layer was dried and the solvent evaporated. Precipitation from chloroform/methanol gave the title compound as a white solid with sufficient purity (68% yield). Single crystals suitable for X-ray diffraction were obtained by evaporation of an methanol-chloroform solution.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). H atoms bonded to O atoms were refined independently with isotropic displacement parameters. Each water molecule is located over three sites with refined occupancies of 0.3, 0.3 and 0.4, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 25% probability level. H atoms and solvent molecules have been omitted for clarity. [symmetry code: -x + 1, y, -z + 3/2].
25,26,27,28-Tetrabutoxy-5,11,17,23-tetra-tert-butylcalix[4]arene chloroform tetrasolvate dihydrate top
Crystal data top
C60H88O4·4CHCl3·2H2OF(000) = 2928
Mr = 1386.81Dx = 1.118 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3284 reflections
a = 23.697 (6) Åθ = 2.1–23.4°
b = 13.682 (6) ŵ = 0.44 mm1
c = 25.402 (11) ÅT = 291 K
V = 8236 (5) Å3Block, colourless
Z = 40.26 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8098 independent reflections
Radiation source: sealed tube5524 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2929
Tmin = 0.894, Tmax = 0.917k = 1616
30239 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.05P)2 + 1.66P]
where P = (Fo2 + 2Fc2)/3
8098 reflections(Δ/σ)max < 0.001
396 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C60H88O4·4CHCl3·2H2OV = 8236 (5) Å3
Mr = 1386.81Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 23.697 (6) ŵ = 0.44 mm1
b = 13.682 (6) ÅT = 291 K
c = 25.402 (11) Å0.26 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5524 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.917Rint = 0.036
30239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.06Δρmax = 0.82 e Å3
8098 reflectionsΔρmin = 0.73 e Å3
396 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.57787 (15)0.8058 (2)0.67567 (14)0.0420 (8)
C20.54138 (13)0.8518 (2)0.63953 (12)0.0404 (7)
C30.54206 (12)0.9534 (2)0.63508 (11)0.0386 (6)
H30.51790.98480.61170.046*
C40.57917 (13)1.0070 (2)0.66598 (11)0.0421 (7)
C50.61583 (11)0.9617 (2)0.70150 (10)0.0332 (6)
H50.64060.99860.72180.040*
C60.61457 (12)0.8602 (2)0.70603 (12)0.0370 (7)
C70.57813 (12)1.1231 (2)0.65850 (11)0.0387 (6)
C80.60471 (12)1.1455 (2)0.60597 (11)0.0393 (7)
H8A0.58571.19990.59010.059*
H8B0.60161.08940.58340.059*
H8C0.64381.16130.61090.059*
C90.51820 (10)1.1628 (2)0.66195 (11)0.0357 (6)
H9A0.51881.23250.65740.054*
H9B0.50251.14720.69580.054*
H9C0.49551.13370.63480.054*
C100.61488 (11)1.1702 (2)0.69931 (12)0.0390 (7)
H10B0.65301.14750.69530.058*
H10C0.60141.15340.73380.058*
H10A0.61381.23990.69500.058*
C110.61946 (12)0.6586 (2)0.64961 (11)0.0367 (6)
H11A0.65490.67390.66680.044*
H11B0.62080.68510.61420.044*
C120.61228 (12)0.5483 (2)0.64683 (12)0.0401 (7)
H12A0.60350.52340.68160.048*
H12B0.58090.53280.62380.048*
C130.66489 (12)0.4991 (2)0.62667 (11)0.0372 (6)
H13A0.69570.50620.65160.045*
H13B0.67630.52660.59310.045*
C140.64812 (11)0.3916 (2)0.62061 (11)0.0371 (6)
H14B0.65540.35760.65290.056*
H14C0.66980.36260.59280.056*
H14A0.60870.38740.61230.056*
C150.58547 (13)0.7960 (3)0.82537 (12)0.0386 (7)
C160.63350 (12)0.8410 (2)0.80232 (12)0.0381 (7)
C170.65826 (12)0.9148 (2)0.82949 (10)0.0357 (6)
H170.68890.94750.81480.043*
C180.63800 (12)0.9434 (2)0.88036 (12)0.0425 (7)
C190.59227 (12)0.9009 (2)0.90043 (12)0.0382 (6)
H190.57900.92040.93320.046*
C200.56358 (12)0.8264 (2)0.87252 (11)0.0344 (6)
C210.66801 (11)1.0294 (2)0.90845 (10)0.0350 (6)
C220.66772 (13)1.1203 (2)0.87343 (12)0.0440 (7)
H22A0.68701.17260.89100.066*
H22B0.62951.13930.86640.066*
H22C0.68651.10600.84090.066*
C230.73076 (11)1.0099 (2)0.91302 (11)0.0391 (6)
H23A0.75121.05760.89290.059*
H23B0.73900.94570.89980.059*
H23C0.74191.01390.94930.059*
C240.64602 (12)1.0517 (2)0.96417 (11)0.0387 (6)
H24A0.63420.99210.98070.058*
H24B0.61461.09570.96200.058*
H24C0.67551.08130.98460.058*
C250.55579 (12)0.6195 (2)0.80020 (11)0.0360 (6)
H25A0.53880.59390.76830.043*
H25B0.52950.60580.82850.043*
C260.60791 (11)0.5575 (2)0.81072 (12)0.0376 (6)
H26A0.62080.56840.84650.045*
H26B0.63790.57670.78690.045*
C270.59455 (11)0.44823 (19)0.80301 (11)0.0328 (6)
H27A0.58870.43350.76610.039*
H27B0.56090.43000.82240.039*
C280.64732 (12)0.3929 (2)0.82466 (11)0.0379 (6)
H28B0.67870.40270.80130.057*
H28C0.63910.32430.82700.057*
H28A0.65670.41750.85900.057*
C290.64066 (10)0.80479 (17)0.74812 (14)0.0385 (5)
H29A0.68080.80100.74090.046*
H29B0.62590.73870.74670.046*
C300.50488 (16)0.79714 (19)0.89170 (10)0.0404 (6)
H30A0.50130.81240.92880.049*
H30B0.49990.72720.88740.049*
C310.49573 (17)0.3828 (2)0.52153 (11)0.0460 (7)
H310.47980.41570.49070.055*
C320.73122 (15)0.2694 (3)0.01260 (14)0.0508 (9)
H320.71120.22780.03790.061*
Cl10.48281 (3)0.45236 (5)0.57806 (3)0.04247 (18)
Cl20.46515 (3)0.26789 (6)0.52866 (3)0.04539 (18)
Cl30.56833 (3)0.36925 (5)0.51371 (3)0.03910 (16)
Cl40.68348 (3)0.31971 (5)0.03167 (3)0.04333 (18)
Cl50.78106 (3)0.20027 (5)0.02173 (3)0.03840 (18)
Cl60.76660 (3)0.36324 (5)0.04606 (3)0.04280 (18)
O10.57497 (8)0.70222 (14)0.67742 (8)0.0400 (5)
O20.55697 (8)0.72678 (14)0.79425 (8)0.0401 (5)
O30.7506 (3)0.8728 (5)0.6931 (3)0.0465 (17)0.30
H3A0.75460.85150.66190.056*0.30
H3C0.77850.85480.71180.056*0.30
O40.78185 (17)0.7656 (3)0.7477 (3)0.0369 (9)0.40
H4B0.77290.77530.77960.044*0.40
H4C0.76750.71210.73720.044*0.40
O50.4793 (3)0.9277 (5)0.9875 (3)0.0464 (17)0.30
H5B0.50400.91801.01120.056*0.30
H5C0.48000.98730.97820.056*0.30
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (19)0.0317 (16)0.0495 (19)0.0136 (14)0.0014 (14)0.0140 (14)
C20.0419 (17)0.0379 (16)0.0416 (16)0.0079 (13)0.0082 (13)0.0112 (13)
C30.0405 (15)0.0396 (15)0.0358 (14)0.0037 (12)0.0043 (12)0.0091 (12)
C40.0529 (18)0.0374 (15)0.0359 (14)0.0077 (13)0.0018 (13)0.0115 (12)
C50.0389 (15)0.0347 (14)0.0260 (12)0.0067 (11)0.0045 (11)0.0022 (11)
C60.0319 (16)0.0366 (16)0.0425 (15)0.0040 (12)0.0091 (12)0.0020 (12)
C70.0435 (16)0.0383 (15)0.0342 (13)0.0056 (12)0.0009 (12)0.0046 (12)
C80.0322 (14)0.0398 (16)0.0458 (16)0.0118 (12)0.0055 (12)0.0111 (13)
C90.0360 (15)0.0355 (14)0.0357 (13)0.0113 (10)0.0072 (10)0.0194 (11)
C100.0289 (14)0.0411 (16)0.0469 (16)0.0106 (12)0.0043 (12)0.0161 (13)
C110.0383 (15)0.0353 (14)0.0366 (14)0.0014 (12)0.0156 (12)0.0012 (11)
C120.0314 (14)0.0413 (16)0.0477 (16)0.0030 (12)0.0106 (12)0.0180 (13)
C130.0408 (15)0.0374 (14)0.0335 (13)0.0079 (12)0.0197 (12)0.0100 (11)
C140.0299 (14)0.0458 (16)0.0356 (14)0.0042 (12)0.0144 (12)0.0101 (12)
C150.0286 (15)0.0514 (19)0.0358 (16)0.0057 (14)0.0025 (12)0.0070 (14)
C160.0253 (14)0.0437 (17)0.0454 (17)0.0022 (12)0.0003 (12)0.0089 (13)
C170.0395 (15)0.0323 (14)0.0353 (13)0.0079 (12)0.0132 (12)0.0089 (11)
C180.0376 (16)0.0488 (17)0.0413 (15)0.0044 (13)0.0135 (13)0.0021 (13)
C190.0297 (14)0.0364 (14)0.0484 (16)0.0098 (11)0.0061 (12)0.0129 (13)
C200.0357 (15)0.0331 (14)0.0345 (14)0.0004 (12)0.0026 (12)0.0082 (12)
C210.0351 (14)0.0360 (15)0.0339 (13)0.0060 (11)0.0089 (11)0.0109 (11)
C220.0445 (17)0.0413 (16)0.0462 (16)0.0042 (13)0.0126 (14)0.0092 (14)
C230.0322 (14)0.0422 (16)0.0428 (15)0.0106 (12)0.0004 (12)0.0092 (13)
C240.0405 (15)0.0383 (15)0.0373 (15)0.0007 (12)0.0051 (12)0.0063 (12)
C250.0376 (15)0.0336 (14)0.0367 (14)0.0063 (11)0.0143 (12)0.0080 (12)
C260.0305 (14)0.0385 (15)0.0438 (15)0.0084 (11)0.0140 (12)0.0158 (12)
C270.0261 (13)0.0320 (13)0.0402 (14)0.0011 (11)0.0158 (11)0.0071 (11)
C280.0446 (16)0.0305 (14)0.0387 (14)0.0132 (12)0.0178 (12)0.0062 (11)
C290.0395 (13)0.0375 (13)0.0385 (12)0.0099 (10)0.0062 (17)0.0045 (16)
C300.0419 (16)0.0379 (13)0.0416 (13)0.0079 (16)0.0082 (15)0.0112 (10)
C310.0461 (17)0.0377 (13)0.0542 (15)0.0044 (17)0.0183 (18)0.0080 (12)
C320.053 (2)0.0443 (19)0.0553 (19)0.0173 (15)0.0097 (15)0.0163 (15)
Cl10.0439 (4)0.0405 (4)0.0431 (4)0.0083 (3)0.0139 (3)0.0118 (3)
Cl20.0457 (4)0.0454 (4)0.0451 (4)0.0024 (3)0.0075 (3)0.0044 (3)
Cl30.0469 (4)0.0377 (3)0.0327 (3)0.0113 (3)0.0002 (3)0.0123 (3)
Cl40.0435 (4)0.0400 (4)0.0464 (4)0.0117 (3)0.0128 (3)0.0054 (3)
Cl50.0459 (4)0.0294 (3)0.0399 (4)0.0140 (3)0.0162 (3)0.0174 (3)
Cl60.0451 (4)0.0454 (4)0.0380 (3)0.0105 (3)0.0132 (3)0.0117 (3)
O10.0363 (11)0.0351 (11)0.0487 (12)0.0017 (8)0.0087 (9)0.0058 (9)
O20.0401 (11)0.0316 (11)0.0485 (12)0.0001 (9)0.0012 (9)0.0122 (9)
O30.040 (4)0.052 (4)0.048 (4)0.025 (3)0.006 (3)0.021 (3)
O40.044 (2)0.032 (2)0.035 (2)0.0053 (17)0.010 (3)0.002 (3)
O50.049 (4)0.048 (4)0.043 (4)0.012 (3)0.014 (3)0.014 (3)
Geometric parameters (Å, º) top
C1—C61.381 (4)C19—H190.9300
C1—C21.410 (5)C20—C301.527 (4)
C1—O11.419 (3)C21—C231.515 (4)
C2—C31.395 (4)C21—C221.529 (4)
C2—C30i1.546 (4)C21—C241.539 (4)
C3—C41.389 (4)C22—H22A0.9600
C3—H30.9300C22—H22B0.9600
C4—C51.398 (4)C22—H22C0.9600
C4—C71.601 (4)C23—H23A0.9600
C5—C61.394 (4)C23—H23B0.9600
C5—H50.9300C23—H23C0.9600
C6—C291.449 (4)C24—H24A0.9600
C7—C101.499 (4)C24—H24B0.9600
C7—C81.507 (4)C24—H24C0.9600
C7—C91.523 (4)C25—O21.475 (3)
C8—H8A0.9600C25—C261.523 (4)
C8—H8B0.9600C25—H25A0.9700
C8—H8C0.9600C25—H25B0.9700
C9—H9A0.9600C26—C271.540 (4)
C9—H9B0.9600C26—H26A0.9700
C9—H9C0.9600C26—H26B0.9700
C10—H10B0.9600C27—C281.562 (4)
C10—H10C0.9600C27—H27A0.9700
C10—H10A0.9600C27—H27B0.9700
C11—O11.403 (4)C28—H28B0.9600
C11—C121.520 (4)C28—H28C0.9600
C11—H11A0.9700C28—H28A0.9600
C11—H11B0.9700C29—H29A0.9700
C12—C131.507 (4)C29—H29B0.9700
C12—H12A0.9700C30—C2i1.546 (4)
C12—H12B0.9700C30—H30A0.9700
C13—C141.531 (4)C30—H30B0.9700
C13—H13A0.9700C31—Cl21.740 (3)
C13—H13B0.9700C31—Cl31.742 (4)
C14—H14B0.9600C31—Cl11.750 (3)
C14—H14C0.9600C31—H310.9800
C14—H14A0.9600C32—Cl41.737 (3)
C15—C201.370 (4)C32—Cl51.746 (3)
C15—O21.407 (4)C32—Cl61.754 (3)
C15—C161.420 (4)C32—H320.9800
C16—C171.357 (4)O3—H3A0.8500
C16—C291.473 (4)O3—H3C0.8499
C17—C181.433 (4)O4—H4B0.8499
C17—H170.9300O4—H4C0.8500
C18—C191.331 (4)O5—H5B0.8500
C18—C211.550 (4)O5—H5C0.8499
C19—C201.415 (4)
C6—C1—C2120.6 (3)C15—C20—C19118.3 (3)
C6—C1—O1123.5 (3)C15—C20—C30123.0 (3)
C2—C1—O1115.9 (3)C19—C20—C30117.8 (2)
C3—C2—C1119.4 (3)C23—C21—C22101.1 (2)
C3—C2—C30i116.7 (3)C23—C21—C24107.3 (2)
C1—C2—C30i123.6 (3)C22—C21—C24111.9 (2)
C4—C3—C2119.2 (3)C23—C21—C18110.6 (2)
C4—C3—H3120.4C22—C21—C18110.4 (2)
C2—C3—H3120.4C24—C21—C18114.8 (2)
C3—C4—C5121.6 (3)C21—C22—H22A109.5
C3—C4—C7116.6 (3)C21—C22—H22B109.5
C5—C4—C7121.8 (3)H22A—C22—H22B109.5
C6—C5—C4118.8 (3)C21—C22—H22C109.5
C6—C5—H5120.6H22A—C22—H22C109.5
C4—C5—H5120.6H22B—C22—H22C109.5
C1—C6—C5120.3 (3)C21—C23—H23A109.5
C1—C6—C29113.5 (3)C21—C23—H23B109.5
C5—C6—C29125.0 (3)H23A—C23—H23B109.5
C10—C7—C8106.4 (2)C21—C23—H23C109.5
C10—C7—C9110.4 (2)H23A—C23—H23C109.5
C8—C7—C9111.6 (2)H23B—C23—H23C109.5
C10—C7—C4109.6 (2)C21—C24—H24A109.5
C8—C7—C4107.5 (2)C21—C24—H24B109.5
C9—C7—C4111.2 (2)H24A—C24—H24B109.5
C7—C8—H8A109.5C21—C24—H24C109.5
C7—C8—H8B109.5H24A—C24—H24C109.5
H8A—C8—H8B109.5H24B—C24—H24C109.5
C7—C8—H8C109.5O2—C25—C26123.9 (2)
H8A—C8—H8C109.5O2—C25—H25A106.4
H8B—C8—H8C109.5C26—C25—H25A106.4
C7—C9—H9A109.5O2—C25—H25B106.4
C7—C9—H9B109.5C26—C25—H25B106.4
H9A—C9—H9B109.5H25A—C25—H25B106.4
C7—C9—H9C109.5C25—C26—C27110.6 (2)
H9A—C9—H9C109.5C25—C26—H26A109.5
H9B—C9—H9C109.5C27—C26—H26A109.5
C7—C10—H10B109.5C25—C26—H26B109.5
C7—C10—H10C109.5C27—C26—H26B109.5
H10B—C10—H10C109.5H26A—C26—H26B108.1
C7—C10—H10A109.5C26—C27—C28105.1 (2)
H10B—C10—H10A109.5C26—C27—H27A110.7
H10C—C10—H10A109.5C28—C27—H27A110.7
O1—C11—C12111.2 (2)C26—C27—H27B110.7
O1—C11—H11A109.4C28—C27—H27B110.7
C12—C11—H11A109.4H27A—C27—H27B108.8
O1—C11—H11B109.4C27—C28—H28B109.5
C12—C11—H11B109.4C27—C28—H28C109.5
H11A—C11—H11B108.0H28B—C28—H28C109.5
C13—C12—C11111.5 (2)C27—C28—H28A109.5
C13—C12—H12A109.3H28B—C28—H28A109.5
C11—C12—H12A109.3H28C—C28—H28A109.5
C13—C12—H12B109.3C6—C29—C16117.7 (2)
C11—C12—H12B109.3C6—C29—H29A107.9
H12A—C12—H12B108.0C16—C29—H29A107.9
C12—C13—C14104.4 (2)C6—C29—H29B107.9
C12—C13—H13A110.9C16—C29—H29B107.9
C14—C13—H13A110.9H29A—C29—H29B107.2
C12—C13—H13B110.9C20—C30—C2i110.8 (2)
C14—C13—H13B110.9C20—C30—H30A109.5
H13A—C13—H13B108.9C2i—C30—H30A109.5
C13—C14—H14B109.5C20—C30—H30B109.5
C13—C14—H14C109.5C2i—C30—H30B109.5
H14B—C14—H14C109.5H30A—C30—H30B108.1
C13—C14—H14A109.5Cl2—C31—Cl3109.10 (17)
H14B—C14—H14A109.5Cl2—C31—Cl1109.46 (19)
H14C—C14—H14A109.5Cl3—C31—Cl1108.92 (18)
C20—C15—O2120.9 (3)Cl2—C31—H31109.8
C20—C15—C16122.2 (3)Cl3—C31—H31109.8
O2—C15—C16116.4 (3)Cl1—C31—H31109.8
C17—C16—C15117.4 (3)Cl4—C32—Cl5109.38 (19)
C17—C16—C29132.6 (3)Cl4—C32—Cl6109.55 (19)
C15—C16—C29109.4 (2)Cl5—C32—Cl6108.37 (19)
C16—C17—C18121.1 (3)Cl4—C32—H32109.8
C16—C17—H17119.4Cl5—C32—H32109.8
C18—C17—H17119.4Cl6—C32—H32109.8
C19—C18—C17120.0 (3)C11—O1—C1111.9 (2)
C19—C18—C21121.9 (3)C15—O2—C25128.4 (2)
C17—C18—C21117.9 (3)H3A—O3—H3C109.5
C18—C19—C20120.9 (3)H4B—O4—H4C109.5
C18—C19—H19119.6H5B—O5—H5C109.5
C20—C19—H19119.6
C6—C1—C2—C30.8 (5)C16—C17—C18—C193.7 (4)
O1—C1—C2—C3179.4 (3)C16—C17—C18—C21179.1 (3)
C6—C1—C2—C30i173.7 (3)C17—C18—C19—C201.0 (4)
O1—C1—C2—C30i7.8 (4)C21—C18—C19—C20176.1 (3)
C1—C2—C3—C40.7 (4)O2—C15—C20—C19175.9 (3)
C30i—C2—C3—C4174.0 (3)C16—C15—C20—C194.2 (5)
C2—C3—C4—C50.1 (4)O2—C15—C20—C307.0 (5)
C2—C3—C4—C7179.5 (3)C16—C15—C20—C30164.8 (3)
C3—C4—C5—C60.4 (4)C18—C19—C20—C152.9 (4)
C7—C4—C5—C6180.0 (2)C18—C19—C20—C30166.7 (3)
C2—C1—C6—C50.3 (5)C19—C18—C21—C23129.6 (3)
O1—C1—C6—C5178.8 (3)C17—C18—C21—C2355.2 (3)
C2—C1—C6—C29168.3 (3)C19—C18—C21—C22119.4 (3)
O1—C1—C6—C2913.2 (4)C17—C18—C21—C2255.9 (3)
C4—C5—C6—C10.3 (4)C19—C18—C21—C248.1 (4)
C4—C5—C6—C29166.2 (3)C17—C18—C21—C24176.6 (2)
C3—C4—C7—C10172.7 (3)O2—C25—C26—C27167.8 (2)
C5—C4—C7—C107.7 (4)C25—C26—C27—C28170.0 (2)
C3—C4—C7—C872.0 (3)C1—C6—C29—C16123.3 (3)
C5—C4—C7—C8107.5 (3)C5—C6—C29—C1644.0 (4)
C3—C4—C7—C950.4 (3)C17—C16—C29—C677.3 (4)
C5—C4—C7—C9130.1 (3)C15—C16—C29—C692.4 (3)
O1—C11—C12—C13168.8 (2)C15—C20—C30—C2i73.2 (4)
C11—C12—C13—C14173.9 (2)C19—C20—C30—C2i95.8 (3)
C20—C15—C16—C171.5 (5)C12—C11—O1—C1173.8 (2)
O2—C15—C16—C17173.6 (3)C6—C1—O1—C1177.5 (4)
C20—C15—C16—C29169.9 (3)C2—C1—O1—C11101.1 (3)
O2—C15—C16—C292.1 (4)C20—C15—O2—C2580.2 (4)
C15—C16—C17—C182.4 (4)C16—C15—O2—C25107.6 (3)
C29—C16—C17—C18171.5 (3)C26—C25—O2—C1545.2 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O40.851.522.149 (8)127
O5—H5C···O5ii0.851.742.299 (13)121
Symmetry code: (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC60H88O4·4CHCl3·2H2O
Mr1386.81
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)291
a, b, c (Å)23.697 (6), 13.682 (6), 25.402 (11)
V3)8236 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.894, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
30239, 8098, 5524
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.117, 1.06
No. of reflections8098
No. of parameters396
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.73

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O40.851.522.149 (8)127.3
O5—H5C···O5i0.851.742.299 (13)120.8
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

We gratefully acknowledge financial support from the Natural Science Foundation of China (No. 20872051).

References

First citationBöhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 713–745.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrusko, V., Böhmer, V. & Bolte, M. (2005). Acta Cryst. E61, o4272–o4273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHomden, D. M. & Redshaw, C. (2008). Chem. Rev. 108, 5086–5130.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatthews, S. E., Saadioui, M., Böhmer, V., Barboso, S., Arnaud-Neu, F., Schwing-Weill, M.-J., Carrera, A. G. & Dozol, J.-F. (1999). J. Prakt. Chem. 341, 264–273.  CrossRef CAS Google Scholar
First citationRathore, R., Lindeman, S. V., Rao, K. S. S. P., Sun, D. & Kochi, J. K. (2000). Angew. Chem. Int. Ed. 39, 2123–2127.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds