organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-formyl-3,4-di­methyl-1H-pyrrole-2-carboxyl­ate

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: wangyuan08@hpu.edu.cn

(Received 14 May 2009; accepted 17 June 2009; online 20 June 2009)

The mol­ecule of the title compound, C10H13NO3, is approximately planar (maximum deviation 0.1424 Å). In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds, and the dimeric units are linked by non-classical C—H⋯O hydrogen bonds, forming a layered structure.

Related literature

For a related structure, see: Kang et al. (2008[Kang, S.-S., Li, H.-L., Zeng, H.-S. & Wang, H.-B. (2008). Acta Cryst. E64, o1125.]). For our studies of bis­(pyrrol-2-yl-methyl­eneamine) ligands, see: Wang et al. (2008[Wang, Y., Yang, Z.-Y. & Chen, Z.-N. (2008). Bioorg. Med. Chem. Lett., 18, 298-303.], 2009[Wang, Y., Wu, W.-N. & Yang, Z.-Y. (2009). X-ray Struct. Anal. Online, 25, 33-34.]). For the synthesis, see: Wang et al. (2008[Wang, Y., Yang, Z.-Y. & Chen, Z.-N. (2008). Bioorg. Med. Chem. Lett., 18, 298-303.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO3

  • Mr = 195.21

  • Triclinic, [P \overline 1]

  • a = 7.2223 (12) Å

  • b = 7.4347 (12) Å

  • c = 10.0488 (17) Å

  • α = 78.412 (2)°

  • β = 84.191 (2)°

  • γ = 79.051 (2)°

  • V = 517.84 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.986

  • 6232 measured reflections

  • 2416 independent reflections

  • 1692 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.212

  • S = 1.07

  • 2416 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.07 2.919 (2) 169
C5—H5A⋯O1ii 0.93 2.54 3.347 (3) 145
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff Base bearing pyrrole units have been extensively investigated for a long time because they could stabilize mono- or binuclear metal complexes which have various structures and special properties. As part of our owning studies of bis(pyrrol-2-yl-methyleneamine) ligands (Wang et al., 2008), we report here the crystal structure of the title compound, (I), (Fig. 1), which is approximately planar.

The molecules are joined to dimers via intermolecular N—H···O hydrogen bonds (Table 1), and the dimeric units are linked with each other by nonclassical C—H···O hydrogen bonds (Table 1) to form a layered geometry (Fig. 2).

Related literature top

For a related structure, see: Kang(2008). For our owning studies of bis(pyrrol-2-yl-methyleneamine) ligands, see: Wang et al. (2008, 2009). For the synthesis, see: Wang et al. (2008).

Experimental top

A quantity of POCl3 (2.30 g, 0.015 mol) was added dropwise to DMF (1.10 g, 0.015 mol) under stirring on an ice-water bath, then a CH2Cl2 solution (30 ml) containing 3,4-dimethyl-2-ethoxycarbonyl-pyrrole (2.51 g, 0.015 mol) was added. After stirring at room temperature for 4 h, a 10% Na2CO3 solution (80 ml) was added. The reaction mixture was refluxing for 0.5 h, then cooled to room temperature, extracted with CH2Cl2 (3×10 ml), and dried with anhydrous Na2CO3. The solvent was evaporated under reduced pressure. The crude product was treated with column chromatography on silica gel [petroleum ether-ethyl acetate (100:1)] to yield (I) 2.25 g (77%). Colorless prisms of (I) were obtained by slow evaporation of an ethanol solution.

Refinement top

(type here to add refinement details)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Layered structure of the title compound. Hydrogen-bonding interactions are shown as dashed lines.
Ethyl 5-formyl-3,4-dimethyl-1H-pyrrole-2-carboxylate top
Crystal data top
C10H13NO3Z = 2
Mr = 195.21F(000) = 208
Triclinic, P1Dx = 1.252 Mg m3
a = 7.2223 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4347 (12) ÅCell parameters from 2123 reflections
c = 10.0488 (17) Åθ = 2.1–27.7°
α = 78.412 (2)°µ = 0.09 mm1
β = 84.191 (2)°T = 296 K
γ = 79.051 (2)°Prism, colorless
V = 517.84 (15) Å30.30 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2416 independent reflections
Radiation source: fine-focus sealed tube1692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.980, Tmax = 0.986k = 99
6232 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1226P)2 + 0.0669P]
where P = (Fo2 + 2Fc2)/3
2416 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H13NO3γ = 79.051 (2)°
Mr = 195.21V = 517.84 (15) Å3
Triclinic, P1Z = 2
a = 7.2223 (12) ÅMo Kα radiation
b = 7.4347 (12) ŵ = 0.09 mm1
c = 10.0488 (17) ÅT = 296 K
α = 78.412 (2)°0.30 × 0.18 × 0.15 mm
β = 84.191 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2416 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1692 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.986Rint = 0.017
6232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.212H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
2416 reflectionsΔρmin = 0.29 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.3634 (3)0.8003 (2)1.03572 (18)0.0519 (5)
C80.2197 (3)0.8074 (3)1.1488 (2)0.0593 (5)
C30.5533 (3)0.7196 (2)1.0262 (2)0.0556 (5)
C10.4613 (3)0.8683 (3)0.8185 (2)0.0585 (5)
C20.6149 (3)0.7620 (3)0.8883 (2)0.0605 (5)
C50.4495 (4)0.9519 (4)0.6766 (2)0.0780 (7)
H5A0.55820.93280.61950.094*
C70.6715 (3)0.6084 (3)1.1392 (2)0.0720 (6)
H7A0.79780.57031.10300.108*
H7B0.61810.50011.18080.108*
H7C0.67410.68361.20600.108*
C90.1496 (4)0.7387 (5)1.3863 (3)0.1023 (10)
H9A0.11260.86601.40080.123*
H9B0.03750.69481.36930.123*
C100.2342 (5)0.6221 (6)1.5051 (3)0.1191 (12)
H10A0.14530.62651.58260.179*
H10B0.34500.66631.52120.179*
H10C0.26870.49601.49060.179*
C60.8106 (3)0.7039 (4)0.8285 (3)0.0872 (8)
H6A0.88840.63180.89930.131*
H6B0.86310.81280.78690.131*
H6C0.80590.63010.76120.131*
O30.2874 (2)0.7315 (2)1.26943 (15)0.0771 (5)
O20.0572 (2)0.8726 (3)1.13418 (17)0.0899 (6)
O10.3095 (3)1.0448 (3)0.62612 (17)0.1053 (7)
N10.3105 (2)0.8889 (2)0.90931 (15)0.0539 (4)
H1A0.19930.94840.89030.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0506 (9)0.0554 (9)0.0481 (10)0.0087 (7)0.0052 (7)0.0051 (7)
C80.0550 (11)0.0682 (11)0.0493 (10)0.0082 (8)0.0053 (8)0.0004 (8)
C30.0517 (10)0.0526 (9)0.0619 (11)0.0072 (7)0.0068 (8)0.0095 (8)
C10.0601 (11)0.0638 (11)0.0518 (11)0.0101 (8)0.0033 (8)0.0155 (8)
C20.0555 (11)0.0608 (10)0.0652 (12)0.0072 (8)0.0024 (9)0.0180 (9)
C50.0779 (15)0.1027 (17)0.0473 (12)0.0053 (13)0.0084 (11)0.0156 (11)
C70.0584 (12)0.0679 (12)0.0837 (15)0.0005 (9)0.0165 (10)0.0048 (10)
C90.0778 (16)0.148 (3)0.0571 (14)0.0005 (16)0.0093 (12)0.0119 (14)
C100.108 (2)0.161 (3)0.0668 (17)0.010 (2)0.0026 (16)0.0126 (18)
C60.0651 (14)0.0912 (16)0.0983 (19)0.0010 (12)0.0157 (13)0.0233 (14)
O30.0625 (9)0.1094 (12)0.0475 (8)0.0070 (8)0.0043 (7)0.0061 (7)
O20.0552 (9)0.1288 (15)0.0616 (10)0.0092 (9)0.0013 (7)0.0126 (9)
O10.0927 (14)0.1528 (19)0.0505 (10)0.0128 (12)0.0006 (9)0.0065 (10)
N10.0507 (8)0.0637 (9)0.0445 (8)0.0055 (7)0.0028 (6)0.0083 (6)
Geometric parameters (Å, º) top
C4—N11.364 (2)C7—H7B0.9600
C4—C31.390 (3)C7—H7C0.9600
C4—C81.461 (3)C9—C101.443 (4)
C8—O21.194 (2)C9—O31.463 (3)
C8—O31.330 (2)C9—H9A0.9700
C3—C21.405 (3)C9—H9B0.9700
C3—C71.500 (3)C10—H10A0.9600
C1—N11.354 (2)C10—H10B0.9600
C1—C21.396 (3)C10—H10C0.9600
C1—C51.440 (3)C6—H6A0.9600
C2—C61.498 (3)C6—H6B0.9600
C5—O11.206 (3)C6—H6C0.9600
C5—H5A0.9300N1—H1A0.8600
C7—H7A0.9600
N1—C4—C3108.93 (17)H7B—C7—H7C109.5
N1—C4—C8117.47 (17)C10—C9—O3108.7 (3)
C3—C4—C8133.61 (18)C10—C9—H9A109.9
O2—C8—O3123.29 (19)O3—C9—H9A109.9
O2—C8—C4123.38 (19)C10—C9—H9B109.9
O3—C8—C4113.32 (17)O3—C9—H9B109.9
C4—C3—C2106.33 (17)H9A—C9—H9B108.3
C4—C3—C7127.64 (19)C9—C10—H10A109.5
C2—C3—C7126.03 (19)C9—C10—H10B109.5
N1—C1—C2108.25 (17)H10A—C10—H10B109.5
N1—C1—C5121.70 (19)C9—C10—H10C109.5
C2—C1—C5130.0 (2)H10A—C10—H10C109.5
C1—C2—C3107.43 (18)H10B—C10—H10C109.5
C1—C2—C6126.8 (2)C2—C6—H6A109.5
C3—C2—C6125.8 (2)C2—C6—H6B109.5
O1—C5—C1125.0 (2)H6A—C6—H6B109.5
O1—C5—H5A117.5C2—C6—H6C109.5
C1—C5—H5A117.5H6A—C6—H6C109.5
C3—C7—H7A109.5H6B—C6—H6C109.5
C3—C7—H7B109.5C8—O3—C9115.39 (18)
H7A—C7—H7B109.5C1—N1—C4109.06 (16)
C3—C7—H7C109.5C1—N1—H1A125.5
H7A—C7—H7C109.5C4—N1—H1A125.5
N1—C4—C8—O26.4 (3)C7—C3—C2—C1179.66 (18)
C3—C4—C8—O2173.7 (2)C4—C3—C2—C6179.9 (2)
N1—C4—C8—O3174.52 (16)C7—C3—C2—C60.1 (3)
C3—C4—C8—O35.4 (3)N1—C1—C5—O10.2 (4)
N1—C4—C3—C20.1 (2)C2—C1—C5—O1178.7 (2)
C8—C4—C3—C2179.9 (2)O2—C8—O3—C92.1 (4)
N1—C4—C3—C7179.99 (18)C4—C8—O3—C9178.8 (2)
C8—C4—C3—C70.1 (3)C10—C9—O3—C8169.4 (3)
N1—C1—C2—C30.7 (2)C2—C1—N1—C40.6 (2)
C5—C1—C2—C3178.0 (2)C5—C1—N1—C4178.23 (18)
N1—C1—C2—C6179.8 (2)C3—C4—N1—C10.3 (2)
C5—C1—C2—C61.5 (4)C8—C4—N1—C1179.68 (15)
C4—C3—C2—C10.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.072.919 (2)169
C5—H5A···O1ii0.932.543.347 (3)145
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H13NO3
Mr195.21
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2223 (12), 7.4347 (12), 10.0488 (17)
α, β, γ (°)78.412 (2), 84.191 (2), 79.051 (2)
V3)517.84 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6232, 2416, 1692
Rint0.017
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.212, 1.07
No. of reflections2416
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.072.919 (2)169.0
C5—H5A···O1ii0.932.543.347 (3)145.3
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+2, z+1.
 

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationKang, S.-S., Li, H.-L., Zeng, H.-S. & Wang, H.-B. (2008). Acta Cryst. E64, o1125.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWang, Y., Wu, W.-N. & Yang, Z.-Y. (2009). X-ray Struct. Anal. Online, 25, 33-34.  CSD CrossRef CAS
First citationWang, Y., Yang, Z.-Y. & Chen, Z.-N. (2008). Bioorg. Med. Chem. Lett., 18, 298-303.  Web of Science CSD CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds