organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1492-o1493

2-(Amino­carbonyl)hydrazin-1-ium 6-carb­oxy­picolinate

aDepartment of Chemical Engineering, Aligarh Muslim University, Aligarh, India, and bIndian Institute of Technology, Kanpur, India
*Correspondence e-mail: skumarchem01@gmail.com

(Received 16 May 2009; accepted 30 May 2009; online 6 June 2009)

In the crystal structure of the title proton-transfer compound, CH6N3O+·C7H4NO4, O—H⋯O and N—H⋯O hydrogen bonds are formed respectively between the cations and the anions, each component affording a supra­molecular chain along the c axis. The cation and anion chains are further linked by N—H⋯O and N—H⋯N hydrogen bonds. A ππ inter­action is also observed between the pyridine rings; the inter­planar separation and the centroid–centroid distance are 3.3425 (6) and 4.6256 (11) Å, respectively.

Related literature

For general background, see: Desiraju (1997[Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. 1475-1475.]); Braga et al. (1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1386.]). For related structures of proton-transfer compounds, see: Moghimi et al. (2002[Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M., Yap, G. P. A. & Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133-149.], 2003[Moghimi, A., Alizadeh, R., Shokrollahi, A., Aghabozorg, H. & Shockravi, A. (2003). Inorg. Chem. 42, 1616-1624.], 2007[Moghimi, A., Moosavi, S. M., Kordestani, D., Maddah, B., Shamsipur, M., Aghabozorg, A., Ramezanipour, F. & Kickelbick, G. (2007). J. Mol. Struct. 828, 38-45.]); Aghabozorg et al. (2008[Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045-o1046.]); Soleimannejad et al. (2008[Soleimannejad, J., Aghabozorg, H., Motyeian, E., Ghadermazi, M., Attar Gharamaleki, J. & Adams, H. (2008). Acta Cryst. E64, o231-o232.]).

[Scheme 1]

Experimental

Crystal data
  • CH6N3O+·C7H4NO4

  • Mr = 242.20

  • Monoclinic, P 21 /c

  • a = 7.9553 (11) Å

  • b = 14.965 (2) Å

  • c = 8.5510 (11) Å

  • β = 97.305 (2)°

  • V = 1009.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.967

  • 10168 measured reflections

  • 1980 independent reflections

  • 1865 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 0.85

  • 1980 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H01A⋯O1i 0.89 2.00 2.7551 (17) 141
N2—H01A⋯N1i 0.89 2.21 2.9361 (17) 139
N2—H01B⋯O4ii 0.89 2.04 2.8781 (19) 156
N2—H01C⋯O1 0.89 1.84 2.7258 (18) 176
N4—H04⋯O2iii 0.83 (2) 2.22 (2) 2.993 (2) 155 (2)
N3—H08⋯O5i 0.88 (2) 2.06 (2) 2.8362 (19) 146.2 (19)
N3—H08⋯O1i 0.88 (2) 2.49 (2) 2.9319 (18) 112.0 (16)
O3—H09⋯O2iv 0.84 (2) 1.79 (2) 2.6109 (16) 165 (2)
N4—H06⋯O5i 0.88 (2) 2.05 (2) 2.869 (2) 153.5 (19)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) x, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the synthesis of crystal structure by design, the assembly of molecule unit in predefined arrangement is a key goal (Desiraju, 1997; Braga et al. 1998). The water soluble, proton transfer compounds can function as suitable ligands in the synthesis of metal complexes. In general, molecular association between carboxylic acid and a Lewis base results in more hydrogen bonding association with considerable stability upon a structure making process. This is because functionalized carboxylic acids and amines can enhance the intermolecular forces between the obtained cationic and anionic fragments, and these interactions can provide a large part of the stabilization energy of resulting self assembly systems (Moghimi et al., 2003, 2007). Proton transfer from carboxylic acid to different amines has been reported (Moghimi et al. 2002; Aghabozorg et al., 2008; Soleimannejad et al., 2008). Herein, we report a novel PTC that have been synthesized using pyridine-2,6-dicarboxylic acid and hydrazinecarboxamide at room temperature and its crystal structure.

In the crystal structure of the compound, intermolecular hydrogen bonds link the molecules to form a proton transfer supramolecular framework. These hydrogen bonds help in the stabilization of the resulting supramolecular structure of the compound (Table 1). The molecular structure of the title compound is shown in (Fig. 1). The crystal structure shows that a single proton from each of the carboxyl groups was transferred to the hydrazinecarboxamide. Thus, the negative charges of monoanionic pyridine-2,6-dicarboxylate groups, (pyH)-, are neutralized by a mono protonated hydraziniumcarboxamide fragment. The C–O distances for this compound support the existence of both ionic (COO) and non-ionic COOH group in the crystal structure of a new proton transfer system. The distance of ionic C—O in carboxylate ion is in the range of 1.250 Å due to resonance but in carboxylic acid group of pyridine-2,6-dicarboxylic acid has a deviation of 0.1 Å. The distance of C—O in carboxlate and carboxylic acid are quite similar to the report (Aghabozorg et al., 2008). The relatively short bond distances of C1–O2 [1.250 (18) Å] and C7–O7 [1.211 (19) Å] confirm the presence of double bonds. In the crystal structure of title compound, a number of N–H—O, N–H—N and O–H—O hydrogen bonds, with D—A ranging from 2.612 (2) to 2.994 (3) Å are observed (Fig. 2). The carboxylate group of one pyridine-2,6-dicarboxylic acid are bonded to OH of another pyridine-2,6-dicarboxylic acid through hydrogen bonding (Fig. 3) with distance of 1.791 Å. In the packing diagram, crystal structure shows hydrogen bonding, ion pairing, π-π stacking and van der Waals interactions. The ππ stacking interactions exist between the two pyridine rings and between the pyridine ring and the NH2 group of the cation with a centroid-centroid distance of 4.626 Å and a π–HN distance of 3.693 Å, respectively (Fig. 4). These interactions result in the formation of a supramolecular structure.

Related literature top

For general background, see: Desiraju (1997); Braga et al. (1998). For related structures of proton-transfer compounds, see: Moghimi et al. (2002, 2003, 2007); Aghabozorg et al. (2008); Soleimannejad et al. (2008).

Experimental top

Pyridine-2,6-dicarboxylic acid was purchased from Merck and used as received. Solvents dimethyl formamide (LobaChemie) and methanol (Qualigens) were used as received. Pyridine-2,6-dicarboxylic acid (11.69 g, 70 mmol) dissolved in methanol-water (100:175 ml) in hot condition over a period of 1 h 30 min. Semicarbazide hydrochloride (7.81 g, 70 mmol) dissolved in DMF-methanol (150:100 ml) was added to the pyridine-2,6-dicarboxylic acid solution in portions with continuous stirring. The reaction mixture was allowed to cool at RT with continuous stirring. The reaction mixture was stirred for 48 h. However, no precipitation was seen. Subsequently, it was allowed to stand for 24 h. Transparent crystalline compound was seen at the bottom of the flask, which was separated by decanting the solution. Crystals were washed with methanol and dried in desiccator. The crystals are stable at room temperature.

Refinement top

H atoms attached to atoms N3, N4 and O3 were refined freely. Other H atoms were introduced in calculated positions (C—H = 0.93 and N—H = 0.89 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound, showing displacement ellipsoids at the 50% probability level for non-hydrogen atoms.
[Figure 2] Fig. 2. Packing diagram, showing molecules linked by N—H···O, O—H···O and N—H···N hydrogen bonds (dashed lines).
[Figure 3] Fig. 3. Supramolecular cation chain formed by O—H···O hydrogen bonds (dashed lines).
[Figure 4] Fig. 4. ππ interaction between the benzene rings.
2-(Aminocarbonyl)hydrazin-1-ium 6-carboxypicolinate top
Crystal data top
CH6N3O+·C7H4NO4F(000) = 504
Mr = 242.20Dx = 1.593 Mg m3
Monoclinic, P21/cMelting point: 475 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.9553 (11) ÅCell parameters from 7532 reflections
b = 14.965 (2) Åθ = 2.6–26.0°
c = 8.5510 (11) ŵ = 0.13 mm1
β = 97.305 (2)°T = 293 K
V = 1009.7 (2) Å3Block, colorless
Z = 40.30 × 0.28 × 0.25 mm
Data collection top
Bruker SMART CCD
diffractometer
1980 independent reflections
Radiation source: fine-focus sealed tube1865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.961, Tmax = 0.967k = 1818
10168 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.7523P]
where P = (Fo2 + 2Fc2)/3
1980 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
CH6N3O+·C7H4NO4V = 1009.7 (2) Å3
Mr = 242.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9553 (11) ŵ = 0.13 mm1
b = 14.965 (2) ÅT = 293 K
c = 8.5510 (11) Å0.30 × 0.28 × 0.25 mm
β = 97.305 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1980 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1865 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.967Rint = 0.023
10168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.20 e Å3
1980 reflectionsΔρmin = 0.25 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47854 (19)0.35088 (10)0.52831 (17)0.0322 (3)
C20.37085 (18)0.41208 (10)0.41520 (17)0.0312 (3)
C30.2536 (2)0.47012 (12)0.46794 (19)0.0383 (4)
H30.24000.47280.57430.046*
C40.1580 (2)0.52359 (13)0.3594 (2)0.0444 (4)
H40.08050.56390.39190.053*
C50.1785 (2)0.51663 (12)0.2019 (2)0.0400 (4)
H50.11420.55120.12620.048*
C60.29775 (18)0.45658 (10)0.15969 (17)0.0316 (3)
C70.31929 (19)0.44623 (10)0.01161 (18)0.0325 (3)
C80.99077 (19)0.22252 (10)0.68173 (17)0.0330 (3)
N10.39422 (15)0.40574 (8)0.26364 (14)0.0302 (3)
N20.70619 (16)0.17789 (9)0.68390 (15)0.0335 (3)
H01A0.63080.16920.75090.050*
H01B0.72280.12690.63460.050*
H01C0.66750.21920.61340.050*
N30.86050 (17)0.20697 (11)0.76760 (17)0.0426 (4)
N41.1225 (2)0.26456 (12)0.75923 (19)0.0475 (4)
O10.59699 (15)0.31012 (8)0.47629 (13)0.0395 (3)
O20.44050 (16)0.34339 (9)0.66510 (13)0.0463 (3)
O30.42447 (16)0.38249 (9)0.03960 (14)0.0448 (3)
O40.24379 (16)0.49243 (8)0.11360 (14)0.0452 (3)
O50.98177 (14)0.19620 (8)0.54419 (13)0.0407 (3)
H041.205 (3)0.2741 (15)0.711 (3)0.057 (6)*
H061.114 (3)0.2797 (14)0.857 (3)0.054 (6)*
H080.853 (3)0.2351 (14)0.857 (3)0.053 (6)*
H090.429 (3)0.3798 (15)0.137 (3)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (8)0.0364 (8)0.0250 (7)0.0052 (6)0.0080 (6)0.0025 (6)
C20.0300 (7)0.0367 (8)0.0280 (7)0.0046 (6)0.0081 (6)0.0038 (6)
C30.0362 (8)0.0488 (9)0.0319 (8)0.0001 (7)0.0116 (6)0.0065 (7)
C40.0383 (9)0.0506 (10)0.0463 (10)0.0095 (7)0.0132 (7)0.0057 (8)
C50.0342 (8)0.0458 (9)0.0399 (9)0.0051 (7)0.0040 (7)0.0013 (7)
C60.0292 (7)0.0353 (8)0.0306 (8)0.0035 (6)0.0046 (6)0.0012 (6)
C70.0308 (7)0.0361 (8)0.0299 (8)0.0055 (6)0.0016 (6)0.0002 (6)
C80.0336 (8)0.0387 (8)0.0277 (7)0.0037 (6)0.0078 (6)0.0043 (6)
N10.0303 (6)0.0354 (7)0.0256 (6)0.0017 (5)0.0065 (5)0.0016 (5)
N20.0306 (7)0.0398 (7)0.0314 (7)0.0036 (5)0.0087 (5)0.0008 (5)
N30.0344 (7)0.0675 (10)0.0273 (7)0.0105 (7)0.0095 (5)0.0106 (7)
N40.0356 (8)0.0707 (11)0.0383 (8)0.0115 (7)0.0125 (6)0.0101 (7)
O10.0437 (7)0.0467 (7)0.0301 (6)0.0099 (5)0.0128 (5)0.0059 (5)
O20.0561 (8)0.0610 (8)0.0245 (6)0.0025 (6)0.0153 (5)0.0014 (5)
O30.0514 (7)0.0597 (8)0.0233 (6)0.0161 (6)0.0053 (5)0.0021 (5)
O40.0549 (7)0.0471 (7)0.0323 (6)0.0058 (6)0.0009 (5)0.0057 (5)
O50.0393 (6)0.0584 (7)0.0262 (6)0.0001 (5)0.0107 (4)0.0009 (5)
Geometric parameters (Å, º) top
C1—O21.2499 (18)C7—O41.2107 (19)
C1—O11.2507 (19)C7—O31.311 (2)
C1—C21.516 (2)C8—O51.2338 (19)
C2—N11.3358 (19)C8—N41.326 (2)
C2—C31.391 (2)C8—N31.364 (2)
C3—C41.379 (2)N2—N31.4090 (19)
C3—H30.9300N2—H01A0.8900
C4—C51.381 (2)N2—H01B0.8900
C4—H40.9300N2—H01C0.8900
C5—C61.387 (2)N3—H080.88 (2)
C5—H50.9300N4—H040.83 (2)
C6—N11.336 (2)N4—H060.88 (2)
C6—C71.504 (2)O3—H090.84 (2)
O2—C1—O1124.90 (15)O4—C7—C6122.35 (15)
O2—C1—C2117.83 (14)O3—C7—C6114.02 (13)
O1—C1—C2117.25 (13)O5—C8—N4125.06 (15)
N1—C2—C3122.73 (15)O5—C8—N3120.18 (15)
N1—C2—C1116.04 (13)N4—C8—N3114.74 (14)
C3—C2—C1121.22 (13)C2—N1—C6117.78 (13)
C4—C3—C2118.65 (15)N3—N2—H01A109.5
C4—C3—H3120.7N3—N2—H01B109.5
C2—C3—H3120.7H01A—N2—H01B109.5
C3—C4—C5119.29 (15)N3—N2—H01C109.5
C3—C4—H4120.4H01A—N2—H01C109.5
C5—C4—H4120.4H01B—N2—H01C109.5
C4—C5—C6118.16 (15)C8—N3—N2116.86 (13)
C4—C5—H5120.9C8—N3—H08121.6 (14)
C6—C5—H5120.9N2—N3—H08116.0 (14)
N1—C6—C5123.36 (14)C8—N4—H04117.1 (16)
N1—C6—C7117.54 (13)C8—N4—H06116.7 (14)
C5—C6—C7119.09 (14)H04—N4—H06126 (2)
O4—C7—O3123.62 (15)C7—O3—H09108.9 (15)
O2—C1—C2—N1167.83 (14)N1—C6—C7—O4176.25 (14)
O1—C1—C2—N110.7 (2)C5—C6—C7—O44.7 (2)
O2—C1—C2—C311.3 (2)N1—C6—C7—O34.6 (2)
O1—C1—C2—C3170.13 (15)C5—C6—C7—O3174.44 (14)
N1—C2—C3—C40.3 (2)C3—C2—N1—C61.2 (2)
C1—C2—C3—C4179.36 (15)C1—C2—N1—C6177.91 (13)
C2—C3—C4—C51.4 (3)C5—C6—N1—C21.6 (2)
C3—C4—C5—C61.1 (3)C7—C6—N1—C2177.39 (13)
C4—C5—C6—N10.5 (2)O5—C8—N3—N213.1 (2)
C4—C5—C6—C7178.52 (15)N4—C8—N3—N2168.50 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H01A···O1i0.892.002.7551 (17)141
N2—H01A···N1i0.892.212.9361 (17)139
N2—H01B···O4ii0.892.042.8781 (19)156
N2—H01C···O10.891.842.7258 (18)176
N4—H04···O2iii0.83 (2)2.22 (2)2.993 (2)155 (2)
N3—H08···O5i0.88 (2)2.06 (2)2.8362 (19)146.2 (19)
N3—H08···O1i0.88 (2)2.49 (2)2.9319 (18)112.0 (16)
O3—H09···O2iv0.84 (2)1.79 (2)2.6109 (16)165 (2)
N4—H06···O5i0.88 (2)2.05 (2)2.869 (2)153.5 (19)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaCH6N3O+·C7H4NO4
Mr242.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.9553 (11), 14.965 (2), 8.5510 (11)
β (°) 97.305 (2)
V3)1009.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.961, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
10168, 1980, 1865
Rint0.023
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 0.85
No. of reflections1980
No. of parameters170
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H01A···O1i0.892.002.7551 (17)141
N2—H01A···N1i0.892.212.9361 (17)139
N2—H01B···O4ii0.892.042.8781 (19)156
N2—H01C···O10.891.842.7258 (18)176
N4—H04···O2iii0.83 (2)2.22 (2)2.993 (2)155 (2)
N3—H08···O5i0.88 (2)2.06 (2)2.8362 (19)146.2 (19)
N3—H08···O1i0.88 (2)2.49 (2)2.9319 (18)112.0 (16)
O3—H09···O2iv0.84 (2)1.79 (2)2.6109 (16)165 (2)
N4—H06···O5i0.88 (2)2.05 (2)2.869 (2)153.5 (19)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z1.
 

Acknowledgements

SMS is grateful to the Council of Science and Technology, UP (CST, UP), India, for awarding grants under the Young Scientist Scheme [Ref No. CST/SERPD/D-3505.2008].

References

First citationAghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045–o1046.  Web of Science CSD CrossRef IUCr Journals
First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1386.  Web of Science CrossRef PubMed CAS
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDesiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. 1475–1475.
First citationMoghimi, A., Alizadeh, R., Shokrollahi, A., Aghabozorg, H. & Shockravi, A. (2003). Inorg. Chem. 42, 1616–1624.  Web of Science CSD CrossRef PubMed CAS
First citationMoghimi, A., Moosavi, S. M., Kordestani, D., Maddah, B., Shamsipur, M., Aghabozorg, A., Ramezanipour, F. & Kickelbick, G. (2007). J. Mol. Struct. 828, 38–45.  Web of Science CSD CrossRef CAS
First citationMoghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M., Yap, G. P. A. & Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133–149.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSoleimannejad, J., Aghabozorg, H., Motyeian, E., Ghadermazi, M., Attar Gharamaleki, J. & Adams, H. (2008). Acta Cryst. E64, o231–o232.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1492-o1493
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds