organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1549-o1550

2-[(E)-2-(4-Chloro­phen­yl)ethen­yl]-1-methyl­pyridinium 4-meth­oxy­benzene­sulfonate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 29 May 2009; accepted 8 June 2009; online 10 June 2009)

In the asymmetric unit of the title salt, C14H13ClN+·C7H7O4S, there are two crystallographically independent mol­ecules for each component. Each cation adopts an E configuration with respect to the C=C bond and is slightly twisted; the dihedral angle between the pyridinium and benzene rings is 6.53 (7)° for one mol­ecule and 5.30 (7)° for the other. The meth­oxy groups in the anion mol­ecules are each twisted from the mean plane of benzene ring with torsion angles of 16.38 (19) and 4.32 (19)°. In the crystal structure, the cations are stacked in an anti­parallel manner along the a axis and the anions are linked together by C—H⋯O inter­actions into a layer parallel to (001). The anion layers are further linked to adjacent cations by C—H⋯O inter­actions. C—H⋯π inter­actions involving the benzene rings of both ions are also observed.

Related literature

For bond length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background on non-linear optical materials research, see: Cheng, Tam, Marder et al. (1991[Cheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. & Spangler, C. W. (1991). J. Phys. Chem. 95, 10643-10652.]); Cheng, Tam, Stevenson et al. (1991[Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991). J. Phys. Chem. 95, 10631-10643.]). For related structures, see: Chanawanno et al. (2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]); Chantrapromma et al. (2009[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144-o1145.]); Chantrapromma, Rodwatcharapiban & Fun (2006[Chantrapromma, S., Rodwatcharapiban, P. & Fun, H.-K. (2006). Acta Cryst. E62, o5689-o5691.]); Chantrapromma, Ruanwas et al. (2006[Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494-o5496.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13ClN+·C7H7O4S

  • Mr = 417.90

  • Monoclinic, P 21 /c

  • a = 15.2323 (2) Å

  • b = 14.2222 (2) Å

  • c = 17.9709 (3) Å

  • β = 99.842 (1)°

  • V = 3835.86 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.50 × 0.31 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.849, Tmax = 0.921

  • 65482 measured reflections

  • 13850 independent reflections

  • 11056 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.05

  • 13850 reflections

  • 509 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1AA⋯O3Bi 0.93 2.53 3.3040 (17) 141
C7A—H7AB⋯O3Aii 0.96 2.56 3.506 (2) 171
C1B—H1BA⋯O3A 0.93 2.31 3.2373 (17) 172
C12B—H12B⋯O2Bi 0.93 2.47 3.2817 (17) 146
C7B—H7BA⋯O4Aii 0.96 2.57 3.518 (2) 171
C14B—H14B⋯O3Bi 0.93 2.59 3.5204 (19) 176
C15A—H15A⋯O2Aiii 0.93 2.47 3.2626 (19) 143
C17B—H17B⋯O3Bi 0.93 2.58 3.474 (2) 161
C20A—H20A⋯O4Aiv 0.93 2.50 3.159 (2) 128
C20B—H20B⋯O4Bv 0.93 2.38 3.185 (2) 144
C21A—H21C⋯O2Aiii 0.96 2.29 3.162 (2) 150
C21B—H21D⋯O2Bvi 0.96 2.42 3.317 (2) 156
C9A—H9AACg3iii 0.93 2.70 3.4423 (13) 137
C11A—H11ACg3 0.93 2.59 3.3482 (13) 139
C11B—H11BCg4vii 0.93 2.77 3.5457 (14) 142
C9B—H9BACg4vi 0.93 2.62 3.3442 (13) 135
C21A—H21BCg2iii 0.96 2.82 3.6853 (18) 151
C21B—H21FCg1viii 0.96 2.82 3.7100 (19) 155
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+2, -z; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x, -y+{\script{3\over 2}}, z-{\script{3\over 2}}]. Cg1, Cg2, Cg3 and Cg4 are the centroids of the C8A–C13A, C8B–C13B, C1A–C6A and C1B–C6B rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In search for new organic nonlinear optical (NLO) materials, aromatic compounds with donor and acceptor substituents are extensively studied. Styryl pyridinium derivatives are considered to be promising NLO materials (Cheng, Tam, Marder et al., 1991; Cheng, Tam, Stevenson et al., 1991). During the course of our exploring for new organic NLO materials, we have previously synthesized and reported a number of the crystal structures of pyridinium derivatives (Chanawanno et al., 2008; Chantrapromma, Rodwatcharapiban & Fun, 2006; Chantrapromma, Ruanwas et al., 2006; Chantrapromma et al., 2009). The title compound (I) has been synthesized and its crystal structure is reported here as part of our ongoing research on NLO materials. Unfortunately, the title compound crystallized in centrosymmetric space group P21/c and does not exhibit second-order nonlinear optical properties.

The asymmetric unit of (I) contains two crystallographically independent molecules each of the C14H13ClN+ cation and the C7H7O4S- anion which are almost identical (Fig. 1). The cation adopts the E configuration with respect to the C14C15 double bond [1.3429 (19) Å in molecule A and 1.3445 (19) Å in molecule B] and the torsion angle of C13–C14–C15–C16 = 178.86 (12)° in molecule A [178.33 (12)° in molecule B]. The molecule of cation is slightly twisted which can be indicated by the dihedral angle between the pyridinium and benzene rings of the cation being 6.53 (7)° in molecule A [5.30 (7)° in molecule B]. The methoxy group is twisted from the plane of benzene ring of the anion with the torsion angle C7–O1–C6–C5 = -16.38 (19)° in molecule A [-4.32 (19)° in molecule B]. The bond distances in both cation and anion have normal values (Allen et al., 1987) and comparable with the closely related compounds (Chanawanno et al., 2008; Chantrapromma, Rodwatcharapiban & Fun, 2006; Chantrapromma, Ruanwas et al., 2006; Chantrapromma et al., 2009).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cations and anions are alternately arranged with the cations stacked in an antiparallel manner along the a axis and the anions linked together by C—H···O weak interactions (Table 1) into chains along the same direction. The anion chains are further linked to the adjacent cations into ribbons along the c axis by C—H···O weak interactions (Table 1). The crystal structure is further stabilized by C—H···π interactions involving the benzene rings (Table 1); Cg1, Cg2, Cg3 and Cg4 are the centroids of the C8A–C13A, C8B–C13B, C1A–C6A and C1B–C6B rings, respectively.

Related literature top

For bond length data, see: Allen et al. (1987). For background on non-linear optical materials research, see: Cheng, Tam, Marder et al. (1991); Cheng, Tam, Stevenson et al. (1991). For related structures, see: Chanawanno et al. (2008); Chantrapromma et al. (2009); Chantrapromma, Rodwatcharapiban & Fun (2006); Chantrapromma, Ruanwas et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). Cg1, Cg2, Cg3 and Cg4 are the centroids of the C8A–C13A, C8B–C13B, C1A–C6A and C1B–C6B rings, respectively.

Experimental top

2-[(E)-2-(4-chlorophenyl)ethenyl]-1-methylpyridinium iodide (0.24 g, 0.67 mmol) was prepared according to the previous report (Chanawanno et al., 2008) and mixed with silver(I) 4-methoxybenzenesulfonate (0.19 g, 0.67 mmol) (Chantrapromma, Rodwatcharapiban & Fun, 2006) in methanol solution (100 ml). The mixture solution was stirred for 30 min, the precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give the title compound as an orange solid. Orange block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks (m.p. 476–477 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH, and 0.96 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.79 Å from Cl1A and the deepest hole is located at 0.61 Å from S1A.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Weak C—H···O interactions are shown as dashed lines.
2-[(E)-2-(4-Chlorophenyl)ethenyl]-1-methylpyridinium 4-methoxybenzenesulfonate top
Crystal data top
C14H13ClN+·C7H7O4SF(000) = 1744
Mr = 417.90Dx = 1.447 Mg m3
Monoclinic, P21/cMelting point = 476–477 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.2323 (2) ÅCell parameters from 13850 reflections
b = 14.2222 (2) Åθ = 2.2–32.5°
c = 17.9709 (3) ŵ = 0.34 mm1
β = 99.842 (1)°T = 100 K
V = 3835.86 (10) Å3Block, orange
Z = 80.50 × 0.31 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
13850 independent reflections
Radiation source: sealed tube11056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 32.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2222
Tmin = 0.849, Tmax = 0.921k = 2119
65482 measured reflectionsl = 2725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0623P)2 + 1.6315P]
where P = (Fo2 + 2Fc2)/3
13850 reflections(Δ/σ)max = 0.001
509 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H13ClN+·C7H7O4SV = 3835.86 (10) Å3
Mr = 417.90Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.2323 (2) ŵ = 0.34 mm1
b = 14.2222 (2) ÅT = 100 K
c = 17.9709 (3) Å0.50 × 0.31 × 0.25 mm
β = 99.842 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
13850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
11056 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.921Rint = 0.033
65482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.97 e Å3
13850 reflectionsΔρmin = 0.36 e Å3
509 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.32287 (2)0.88225 (2)0.45723 (2)0.02793 (8)
S1A0.48109 (2)0.93858 (2)0.237547 (19)0.01944 (7)
O1A0.23458 (7)0.61426 (7)0.18741 (6)0.0284 (2)
O2A0.44566 (8)1.00518 (8)0.17884 (7)0.0341 (3)
O3A0.56868 (7)0.90330 (9)0.23050 (9)0.0404 (3)
O4A0.47682 (7)0.97356 (8)0.31282 (6)0.0275 (2)
N1A0.39490 (7)0.25104 (9)0.56571 (7)0.0238 (2)
C1A0.26165 (8)0.77407 (10)0.21133 (7)0.0209 (2)
H1AA0.20120.78170.21200.025*
C2A0.31827 (8)0.85064 (9)0.22216 (7)0.0190 (2)
H2AA0.29540.91000.22910.023*
C3A0.40971 (8)0.83949 (9)0.22282 (7)0.0174 (2)
C4A0.44290 (9)0.75035 (9)0.21200 (7)0.0193 (2)
H4AA0.50370.74250.21290.023*
C5A0.38663 (9)0.67272 (9)0.19984 (7)0.0211 (2)
H5AA0.40940.61350.19210.025*
C6A0.29572 (9)0.68487 (9)0.19935 (7)0.0205 (2)
C7A0.26202 (13)0.52937 (11)0.15488 (9)0.0347 (4)
H7AA0.21140.48900.14080.052*
H7AB0.30580.49790.19110.052*
H7AC0.28720.54440.11090.052*
C8A0.34428 (9)0.61220 (10)0.51834 (7)0.0206 (2)
H8AA0.33400.57580.55900.025*
C9A0.32870 (9)0.70814 (10)0.51876 (7)0.0212 (2)
H9AA0.30750.73600.55900.025*
C10A0.34515 (8)0.76217 (9)0.45819 (7)0.0202 (2)
C11A0.37708 (9)0.72212 (10)0.39728 (7)0.0214 (2)
H11A0.38860.75930.35750.026*
C12A0.39139 (9)0.62607 (10)0.39716 (7)0.0210 (2)
H12A0.41200.59870.35640.025*
C13A0.37542 (8)0.56894 (9)0.45724 (7)0.0187 (2)
C14A0.39199 (8)0.46781 (10)0.45331 (8)0.0207 (2)
H14A0.40600.44410.40860.025*
C15A0.38828 (9)0.40694 (10)0.50982 (8)0.0217 (2)
H15A0.37530.43050.55500.026*
C16A0.40336 (8)0.30628 (10)0.50458 (8)0.0215 (2)
C17A0.42550 (9)0.26255 (11)0.44091 (9)0.0264 (3)
H17A0.43180.29860.39890.032*
C18A0.43828 (10)0.16620 (11)0.43922 (11)0.0317 (3)
H18A0.45200.13740.39620.038*
C19A0.43033 (10)0.11325 (11)0.50268 (11)0.0342 (4)
H19A0.43940.04860.50280.041*
C20A0.40912 (10)0.15698 (11)0.56505 (10)0.0307 (3)
H20A0.40440.12160.60770.037*
C21A0.36931 (11)0.29182 (11)0.63493 (9)0.0294 (3)
H21A0.36920.24330.67200.044*
H21B0.31080.31880.62280.044*
H21C0.41130.33970.65470.044*
Cl1B0.17518 (2)1.38107 (3)0.00463 (2)0.02803 (8)
S1B1.00942 (2)0.95490 (2)0.246406 (19)0.01974 (7)
O1B0.71704 (7)0.67561 (7)0.20958 (6)0.0260 (2)
O2B0.98081 (7)1.02649 (8)0.18966 (7)0.0305 (2)
O3B1.09004 (7)0.90609 (8)0.23490 (8)0.0344 (3)
O4B1.01406 (8)0.98951 (8)0.32302 (6)0.0303 (2)
N1B0.10047 (8)0.74523 (10)0.05082 (8)0.0319 (3)
C1B0.76794 (8)0.83076 (9)0.22112 (7)0.0200 (2)
H1BA0.70910.84980.21890.024*
C2B0.83556 (8)0.89695 (9)0.22830 (7)0.0191 (2)
H2BA0.82190.96060.22980.023*
C3B0.92421 (8)0.86844 (9)0.23329 (7)0.0171 (2)
C4B0.94376 (8)0.77349 (9)0.22876 (7)0.0186 (2)
H4BA1.00270.75460.23160.022*
C5B0.87619 (9)0.70594 (9)0.22008 (7)0.0189 (2)
H5BA0.88960.64250.21630.023*
C6B0.78849 (8)0.73524 (9)0.21724 (7)0.0190 (2)
C7B0.73447 (11)0.57794 (11)0.19885 (11)0.0347 (4)
H7BA0.67970.54320.19390.052*
H7BB0.77540.55490.24160.052*
H7BC0.76000.57030.15390.052*
C8B0.15924 (9)1.10411 (10)0.02634 (7)0.0228 (3)
H8BA0.16991.06170.06320.027*
C9B0.17369 (9)1.19907 (10)0.03607 (7)0.0230 (3)
H9BA0.19431.22030.07890.028*
C10B0.15711 (8)1.26222 (10)0.01867 (7)0.0202 (2)
C11B0.12748 (9)1.23201 (10)0.08390 (7)0.0211 (2)
H11B0.11701.27500.12040.025*
C12B0.11402 (8)1.13654 (10)0.09326 (7)0.0203 (2)
H12B0.09481.11560.13680.024*
C13B0.12876 (8)1.07074 (9)0.03831 (7)0.0189 (2)
C14B0.11282 (8)0.97080 (10)0.05008 (7)0.0207 (2)
H14B0.10860.95080.09860.025*
C15B0.10399 (9)0.90638 (10)0.00546 (8)0.0234 (3)
H15B0.10670.92670.05420.028*
C16B0.09044 (9)0.80646 (10)0.00640 (9)0.0248 (3)
C17B0.06762 (9)0.76977 (10)0.07236 (9)0.0273 (3)
H17B0.05960.81040.11120.033*
C18B0.05662 (10)0.67402 (11)0.08135 (12)0.0353 (4)
H18B0.04230.65010.12600.042*
C19B0.06737 (11)0.61438 (12)0.02235 (13)0.0424 (5)
H19B0.06050.54980.02720.051*
C20B0.08801 (11)0.65085 (13)0.04276 (12)0.0426 (5)
H20B0.09370.61060.08250.051*
C21B0.12482 (12)0.77952 (14)0.12228 (9)0.0411 (4)
H21D0.08000.82240.14620.062*
H21E0.12900.72720.15530.062*
H21F0.18120.81120.11180.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.03154 (17)0.01948 (15)0.03326 (18)0.00150 (12)0.00692 (13)0.00094 (13)
S1A0.01734 (13)0.01703 (14)0.02512 (15)0.00031 (10)0.00697 (11)0.00271 (11)
O1A0.0329 (5)0.0219 (5)0.0302 (5)0.0082 (4)0.0051 (4)0.0025 (4)
O2A0.0464 (7)0.0225 (5)0.0301 (6)0.0095 (5)0.0029 (5)0.0093 (4)
O3A0.0186 (5)0.0319 (6)0.0749 (9)0.0011 (4)0.0198 (5)0.0077 (6)
O4A0.0284 (5)0.0306 (6)0.0236 (5)0.0073 (4)0.0045 (4)0.0025 (4)
N1A0.0178 (5)0.0243 (6)0.0276 (6)0.0037 (4)0.0006 (4)0.0044 (5)
C1A0.0183 (5)0.0230 (6)0.0217 (6)0.0006 (4)0.0045 (4)0.0004 (5)
C2A0.0186 (5)0.0172 (5)0.0218 (6)0.0040 (4)0.0052 (4)0.0001 (5)
C3A0.0187 (5)0.0144 (5)0.0202 (5)0.0023 (4)0.0066 (4)0.0025 (4)
C4A0.0219 (5)0.0172 (6)0.0203 (6)0.0053 (4)0.0078 (4)0.0035 (4)
C5A0.0283 (6)0.0158 (6)0.0205 (6)0.0042 (4)0.0077 (5)0.0026 (5)
C6A0.0262 (6)0.0183 (6)0.0174 (5)0.0027 (4)0.0044 (4)0.0013 (4)
C7A0.0586 (11)0.0199 (7)0.0273 (7)0.0119 (7)0.0122 (7)0.0014 (6)
C8A0.0213 (5)0.0239 (6)0.0171 (5)0.0003 (4)0.0047 (4)0.0012 (5)
C9A0.0228 (6)0.0238 (6)0.0170 (5)0.0005 (5)0.0036 (4)0.0025 (5)
C10A0.0194 (5)0.0192 (6)0.0209 (6)0.0007 (4)0.0007 (4)0.0012 (5)
C11A0.0207 (5)0.0253 (6)0.0182 (6)0.0007 (5)0.0036 (4)0.0028 (5)
C12A0.0212 (6)0.0245 (6)0.0181 (5)0.0029 (5)0.0059 (4)0.0017 (5)
C13A0.0166 (5)0.0211 (6)0.0182 (5)0.0011 (4)0.0027 (4)0.0003 (4)
C14A0.0199 (5)0.0214 (6)0.0213 (6)0.0010 (4)0.0044 (4)0.0005 (5)
C15A0.0227 (6)0.0200 (6)0.0218 (6)0.0002 (4)0.0022 (5)0.0003 (5)
C16A0.0164 (5)0.0208 (6)0.0261 (6)0.0006 (4)0.0008 (4)0.0026 (5)
C17A0.0230 (6)0.0253 (7)0.0311 (7)0.0017 (5)0.0056 (5)0.0006 (6)
C18A0.0221 (6)0.0251 (7)0.0480 (9)0.0013 (5)0.0062 (6)0.0055 (7)
C19A0.0225 (6)0.0199 (7)0.0596 (11)0.0001 (5)0.0053 (7)0.0023 (7)
C20A0.0217 (6)0.0231 (7)0.0451 (9)0.0039 (5)0.0003 (6)0.0103 (6)
C21A0.0321 (7)0.0303 (8)0.0249 (7)0.0098 (6)0.0025 (5)0.0035 (6)
Cl1B0.02942 (16)0.02355 (16)0.03146 (18)0.00345 (12)0.00619 (13)0.00262 (13)
S1B0.01986 (14)0.01587 (14)0.02444 (15)0.00113 (10)0.00647 (11)0.00002 (11)
O1B0.0241 (5)0.0227 (5)0.0314 (5)0.0071 (4)0.0049 (4)0.0022 (4)
O2B0.0322 (5)0.0251 (5)0.0344 (6)0.0063 (4)0.0062 (4)0.0114 (4)
O3B0.0189 (5)0.0264 (5)0.0592 (8)0.0017 (4)0.0099 (5)0.0102 (5)
O4B0.0396 (6)0.0262 (5)0.0251 (5)0.0083 (4)0.0055 (4)0.0046 (4)
N1B0.0229 (6)0.0323 (7)0.0362 (7)0.0093 (5)0.0073 (5)0.0167 (6)
C1B0.0185 (5)0.0213 (6)0.0213 (6)0.0016 (4)0.0068 (4)0.0015 (5)
C2B0.0209 (5)0.0167 (6)0.0210 (6)0.0027 (4)0.0075 (4)0.0014 (4)
C3B0.0188 (5)0.0154 (5)0.0177 (5)0.0001 (4)0.0050 (4)0.0016 (4)
C4B0.0195 (5)0.0162 (5)0.0200 (5)0.0024 (4)0.0032 (4)0.0022 (4)
C5B0.0240 (6)0.0143 (5)0.0183 (5)0.0008 (4)0.0033 (4)0.0035 (4)
C6B0.0219 (5)0.0186 (6)0.0170 (5)0.0030 (4)0.0050 (4)0.0030 (4)
C7B0.0352 (8)0.0188 (7)0.0470 (9)0.0083 (6)0.0021 (7)0.0091 (6)
C8B0.0244 (6)0.0281 (7)0.0165 (5)0.0037 (5)0.0057 (4)0.0018 (5)
C9B0.0233 (6)0.0296 (7)0.0169 (5)0.0026 (5)0.0059 (4)0.0033 (5)
C10B0.0173 (5)0.0224 (6)0.0203 (6)0.0005 (4)0.0017 (4)0.0013 (5)
C11B0.0207 (5)0.0251 (6)0.0178 (5)0.0022 (5)0.0043 (4)0.0040 (5)
C12B0.0204 (5)0.0248 (6)0.0164 (5)0.0039 (5)0.0051 (4)0.0034 (5)
C13B0.0168 (5)0.0226 (6)0.0172 (5)0.0002 (4)0.0026 (4)0.0027 (5)
C14B0.0191 (5)0.0229 (6)0.0200 (6)0.0007 (4)0.0029 (4)0.0032 (5)
C15B0.0217 (6)0.0250 (6)0.0229 (6)0.0020 (5)0.0023 (5)0.0057 (5)
C16B0.0159 (5)0.0244 (7)0.0316 (7)0.0030 (4)0.0031 (5)0.0114 (5)
C17B0.0205 (6)0.0213 (6)0.0385 (8)0.0000 (5)0.0004 (5)0.0066 (6)
C18B0.0226 (6)0.0223 (7)0.0585 (11)0.0001 (5)0.0003 (7)0.0022 (7)
C19B0.0253 (7)0.0207 (7)0.0758 (14)0.0020 (5)0.0066 (8)0.0130 (8)
C20B0.0277 (7)0.0317 (8)0.0610 (12)0.0110 (6)0.0129 (7)0.0255 (8)
C21B0.0395 (9)0.0514 (11)0.0283 (8)0.0218 (8)0.0058 (6)0.0163 (7)
Geometric parameters (Å, º) top
Cl1A—C10A1.7406 (14)Cl1B—C10B1.7378 (14)
S1A—O3A1.4512 (11)S1B—O4B1.4526 (11)
S1A—O2A1.4515 (11)S1B—O2B1.4542 (11)
S1A—O4A1.4531 (11)S1B—O3B1.4558 (11)
S1A—C3A1.7720 (13)S1B—C3B1.7742 (13)
O1A—C6A1.3614 (16)O1B—C6B1.3680 (15)
O1A—C7A1.434 (2)O1B—C7B1.4334 (19)
N1A—C20A1.356 (2)N1B—C20B1.367 (2)
N1A—C16A1.3744 (18)N1B—C16B1.3758 (18)
N1A—C21A1.484 (2)N1B—C21B1.479 (2)
C1A—C2A1.3821 (19)C1B—C2B1.3851 (18)
C1A—C6A1.4011 (19)C1B—C6B1.3985 (18)
C1A—H1AA0.9300C1B—H1BA0.9300
C2A—C3A1.3998 (16)C2B—C3B1.3980 (17)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.3908 (17)C3B—C4B1.3882 (17)
C4A—C5A1.3918 (19)C4B—C5B1.3970 (18)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.3941 (19)C5B—C6B1.3919 (18)
C5A—H5AA0.9300C5B—H5BA0.9300
C7A—H7AA0.9600C7B—H7BA0.9600
C7A—H7AB0.9600C7B—H7BB0.9600
C7A—H7AC0.9600C7B—H7BC0.9600
C8A—C9A1.3853 (19)C8B—C9B1.384 (2)
C8A—C13A1.4096 (18)C8B—C13B1.4053 (18)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.3899 (18)C9B—C10B1.3867 (19)
C9A—H9AA0.9300C9B—H9BA0.9300
C10A—C11A1.3932 (18)C10B—C11B1.3940 (18)
C11A—C12A1.383 (2)C11B—C12B1.3878 (19)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.4052 (18)C12B—C13B1.4061 (18)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.4642 (19)C13B—C14B1.4635 (19)
C14A—C15A1.3429 (19)C14B—C15B1.3445 (19)
C14A—H14A0.9300C14B—H14B0.9300
C15A—C16A1.4556 (19)C15B—C16B1.457 (2)
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.393 (2)C16B—C17B1.393 (2)
C17A—C18A1.385 (2)C17B—C18B1.385 (2)
C17A—H17A0.9300C17B—H17B0.9300
C18A—C19A1.389 (3)C18B—C19B1.389 (3)
C18A—H18A0.9300C18B—H18B0.9300
C19A—C20A1.368 (3)C19B—C20B1.365 (3)
C19A—H19A0.9300C19B—H19B0.9300
C20A—H20A0.9300C20B—H20B0.9300
C21A—H21A0.9600C21B—H21D0.9600
C21A—H21B0.9600C21B—H21E0.9600
C21A—H21C0.9600C21B—H21F0.9600
O3A—S1A—O2A113.28 (8)O4B—S1B—O2B112.80 (7)
O3A—S1A—O4A112.81 (8)O4B—S1B—O3B113.00 (7)
O2A—S1A—O4A112.52 (7)O2B—S1B—O3B113.16 (7)
O3A—S1A—C3A105.18 (6)O4B—S1B—C3B106.07 (6)
O2A—S1A—C3A105.55 (6)O2B—S1B—C3B105.50 (6)
O4A—S1A—C3A106.70 (6)O3B—S1B—C3B105.45 (6)
C6A—O1A—C7A116.49 (12)C6B—O1B—C7B116.86 (11)
C20A—N1A—C16A121.34 (13)C20B—N1B—C16B120.48 (16)
C20A—N1A—C21A117.29 (13)C20B—N1B—C21B118.41 (15)
C16A—N1A—C21A121.37 (12)C16B—N1B—C21B121.11 (15)
C2A—C1A—C6A119.76 (12)C2B—C1B—C6B119.71 (11)
C2A—C1A—H1AA120.1C2B—C1B—H1BA120.1
C6A—C1A—H1AA120.1C6B—C1B—H1BA120.1
C1A—C2A—C3A120.53 (12)C1B—C2B—C3B120.24 (12)
C1A—C2A—H2AA119.7C1B—C2B—H2BA119.9
C3A—C2A—H2AA119.7C3B—C2B—H2BA119.9
C4A—C3A—C2A119.14 (12)C4B—C3B—C2B119.53 (11)
C4A—C3A—S1A121.17 (9)C4B—C3B—S1B121.50 (9)
C2A—C3A—S1A119.69 (9)C2B—C3B—S1B118.96 (10)
C3A—C4A—C5A121.08 (12)C3B—C4B—C5B120.94 (11)
C3A—C4A—H4AA119.5C3B—C4B—H4BA119.5
C5A—C4A—H4AA119.5C5B—C4B—H4BA119.5
C4A—C5A—C6A119.14 (12)C6B—C5B—C4B118.84 (12)
C4A—C5A—H5AA120.4C6B—C5B—H5BA120.6
C6A—C5A—H5AA120.4C4B—C5B—H5BA120.6
O1A—C6A—C5A124.16 (12)O1B—C6B—C5B124.06 (12)
O1A—C6A—C1A115.51 (12)O1B—C6B—C1B115.23 (11)
C5A—C6A—C1A120.32 (12)C5B—C6B—C1B120.70 (12)
O1A—C7A—H7AA109.5O1B—C7B—H7BA109.5
O1A—C7A—H7AB109.5O1B—C7B—H7BB109.5
H7AA—C7A—H7AB109.5H7BA—C7B—H7BB109.5
O1A—C7A—H7AC109.5O1B—C7B—H7BC109.5
H7AA—C7A—H7AC109.5H7BA—C7B—H7BC109.5
H7AB—C7A—H7AC109.5H7BB—C7B—H7BC109.5
C9A—C8A—C13A120.99 (12)C9B—C8B—C13B121.06 (12)
C9A—C8A—H8AA119.5C9B—C8B—H8BA119.5
C13A—C8A—H8AA119.5C13B—C8B—H8BA119.5
C8A—C9A—C10A119.10 (12)C8B—C9B—C10B119.36 (12)
C8A—C9A—H9AA120.5C8B—C9B—H9BA120.3
C10A—C9A—H9AA120.5C10B—C9B—H9BA120.3
C9A—C10A—C11A121.55 (13)C9B—C10B—C11B121.42 (13)
C9A—C10A—Cl1A119.29 (10)C9B—C10B—Cl1B118.32 (10)
C11A—C10A—Cl1A119.15 (10)C11B—C10B—Cl1B120.26 (11)
C12A—C11A—C10A118.76 (12)C12B—C11B—C10B118.64 (12)
C12A—C11A—H11A120.6C12B—C11B—H11B120.7
C10A—C11A—H11A120.6C10B—C11B—H11B120.7
C11A—C12A—C13A121.45 (12)C11B—C12B—C13B121.42 (12)
C11A—C12A—H12A119.3C11B—C12B—H12B119.3
C13A—C12A—H12A119.3C13B—C12B—H12B119.3
C12A—C13A—C8A118.14 (12)C8B—C13B—C12B118.10 (12)
C12A—C13A—C14A118.49 (11)C8B—C13B—C14B122.27 (12)
C8A—C13A—C14A123.37 (12)C12B—C13B—C14B119.63 (11)
C15A—C14A—C13A124.53 (12)C15B—C14B—C13B123.55 (13)
C15A—C14A—H14A117.7C15B—C14B—H14B118.2
C13A—C14A—H14A117.7C13B—C14B—H14B118.2
C14A—C15A—C16A123.89 (13)C14B—C15B—C16B123.70 (14)
C14A—C15A—H15A118.1C14B—C15B—H15B118.1
C16A—C15A—H15A118.1C16B—C15B—H15B118.1
N1A—C16A—C17A118.05 (13)N1B—C16B—C17B118.35 (14)
N1A—C16A—C15A118.24 (12)N1B—C16B—C15B118.13 (14)
C17A—C16A—C15A123.72 (13)C17B—C16B—C15B123.52 (13)
C18A—C17A—C16A120.94 (15)C18B—C17B—C16B121.37 (15)
C18A—C17A—H17A119.5C18B—C17B—H17B119.3
C16A—C17A—H17A119.5C16B—C17B—H17B119.3
C17A—C18A—C19A119.08 (16)C17B—C18B—C19B118.62 (18)
C17A—C18A—H18A120.5C17B—C18B—H18B120.7
C19A—C18A—H18A120.5C19B—C18B—H18B120.7
C20A—C19A—C18A119.48 (15)C20B—C19B—C18B119.79 (16)
C20A—C19A—H19A120.3C20B—C19B—H19B120.1
C18A—C19A—H19A120.3C18B—C19B—H19B120.1
N1A—C20A—C19A121.09 (15)C19B—C20B—N1B121.37 (16)
N1A—C20A—H20A119.5C19B—C20B—H20B119.3
C19A—C20A—H20A119.5N1B—C20B—H20B119.3
N1A—C21A—H21A109.5N1B—C21B—H21D109.5
N1A—C21A—H21B109.5N1B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
N1A—C21A—H21C109.5N1B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
C6A—C1A—C2A—C3A1.3 (2)C6B—C1B—C2B—C3B1.37 (19)
C1A—C2A—C3A—C4A0.37 (19)C1B—C2B—C3B—C4B1.88 (19)
C1A—C2A—C3A—S1A179.50 (10)C1B—C2B—C3B—S1B177.39 (10)
O3A—S1A—C3A—C4A3.32 (13)O4B—S1B—C3B—C4B108.83 (11)
O2A—S1A—C3A—C4A123.36 (12)O2B—S1B—C3B—C4B131.27 (11)
O4A—S1A—C3A—C4A116.73 (11)O3B—S1B—C3B—C4B11.27 (13)
O3A—S1A—C3A—C2A176.81 (11)O4B—S1B—C3B—C2B70.43 (12)
O2A—S1A—C3A—C2A56.77 (12)O2B—S1B—C3B—C2B49.47 (12)
O4A—S1A—C3A—C2A63.14 (12)O3B—S1B—C3B—C2B169.48 (11)
C2A—C3A—C4A—C5A0.64 (19)C2B—C3B—C4B—C5B0.67 (19)
S1A—C3A—C4A—C5A179.48 (10)S1B—C3B—C4B—C5B178.59 (10)
C3A—C4A—C5A—C6A0.67 (19)C3B—C4B—C5B—C6B1.04 (19)
C7A—O1A—C6A—C5A16.38 (19)C7B—O1B—C6B—C5B4.32 (19)
C7A—O1A—C6A—C1A163.36 (13)C7B—O1B—C6B—C1B174.76 (13)
C4A—C5A—C6A—O1A179.42 (12)C4B—C5B—C6B—O1B179.40 (12)
C4A—C5A—C6A—C1A0.31 (19)C4B—C5B—C6B—C1B1.57 (19)
C2A—C1A—C6A—O1A178.45 (12)C2B—C1B—C6B—O1B179.49 (11)
C2A—C1A—C6A—C5A1.3 (2)C2B—C1B—C6B—C5B0.38 (19)
C13A—C8A—C9A—C10A0.7 (2)C13B—C8B—C9B—C10B0.5 (2)
C8A—C9A—C10A—C11A0.2 (2)C8B—C9B—C10B—C11B1.0 (2)
C8A—C9A—C10A—Cl1A178.29 (10)C8B—C9B—C10B—Cl1B179.60 (11)
C9A—C10A—C11A—C12A0.9 (2)C9B—C10B—C11B—C12B0.4 (2)
Cl1A—C10A—C11A—C12A177.56 (10)Cl1B—C10B—C11B—C12B179.82 (10)
C10A—C11A—C12A—C13A0.8 (2)C10B—C11B—C12B—C13B0.6 (2)
C11A—C12A—C13A—C8A0.09 (19)C9B—C8B—C13B—C12B0.5 (2)
C11A—C12A—C13A—C14A179.97 (12)C9B—C8B—C13B—C14B179.93 (13)
C9A—C8A—C13A—C12A0.84 (19)C11B—C12B—C13B—C8B1.10 (19)
C9A—C8A—C13A—C14A179.22 (13)C11B—C12B—C13B—C14B179.34 (12)
C12A—C13A—C14A—C15A172.88 (13)C8B—C13B—C14B—C15B17.2 (2)
C8A—C13A—C14A—C15A7.1 (2)C12B—C13B—C14B—C15B163.30 (13)
C13A—C14A—C15A—C16A178.86 (12)C13B—C14B—C15B—C16B178.33 (12)
C20A—N1A—C16A—C17A1.17 (19)C20B—N1B—C16B—C17B0.2 (2)
C21A—N1A—C16A—C17A178.46 (12)C21B—N1B—C16B—C17B179.88 (13)
C20A—N1A—C16A—C15A179.14 (12)C20B—N1B—C16B—C15B179.62 (13)
C21A—N1A—C16A—C15A1.22 (18)C21B—N1B—C16B—C15B0.34 (19)
C14A—C15A—C16A—N1A177.99 (13)C14B—C15B—C16B—N1B166.95 (13)
C14A—C15A—C16A—C17A1.7 (2)C14B—C15B—C16B—C17B13.3 (2)
N1A—C16A—C17A—C18A0.2 (2)N1B—C16B—C17B—C18B1.1 (2)
C15A—C16A—C17A—C18A179.44 (13)C15B—C16B—C17B—C18B179.12 (14)
C16A—C17A—C18A—C19A1.2 (2)C16B—C17B—C18B—C19B1.1 (2)
C17A—C18A—C19A—C20A0.7 (2)C17B—C18B—C19B—C20B0.2 (2)
C16A—N1A—C20A—C19A1.6 (2)C18B—C19B—C20B—N1B1.5 (2)
C21A—N1A—C20A—C19A178.03 (13)C16B—N1B—C20B—C19B1.5 (2)
C18A—C19A—C20A—N1A0.6 (2)C21B—N1B—C20B—C19B178.56 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···O3Bi0.932.533.3040 (17)141
C7A—H7AB···O3Aii0.962.563.506 (2)171
C1B—H1BA···O3A0.932.313.2373 (17)172
C12B—H12B···O2Bi0.932.473.2817 (17)146
C7B—H7BA···O4Aii0.962.573.518 (2)171
C14B—H14B···O3Bi0.932.593.5204 (19)176
C15A—H15A···O2Aiii0.932.473.2626 (19)143
C17B—H17B···O3Bi0.932.583.474 (2)161
C20A—H20A···O4Aiv0.932.503.159 (2)128
C20B—H20B···O4Bv0.932.383.185 (2)144
C21A—H21C···O2Aiii0.962.293.162 (2)150
C21B—H21D···O2Bvi0.962.423.317 (2)156
C9A—H9AA···Cg3iii0.932.703.4423 (13)137
C11A—H11A···Cg30.932.593.3482 (13)139
C11B—H11B···Cg4vii0.932.773.5457 (14)142
C9B—H9BA···Cg4vi0.932.623.3442 (13)135
C21A—H21B···Cg2iii0.962.823.6853 (18)151
C21B—H21F···Cg1viii0.962.823.7100 (19)155
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y+3/2, z1/2; (vi) x+1, y+2, z; (vii) x+1, y+1/2, z+1/2; (viii) x, y+3/2, z3/2.

Experimental details

Crystal data
Chemical formulaC14H13ClN+·C7H7O4S
Mr417.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.2323 (2), 14.2222 (2), 17.9709 (3)
β (°) 99.842 (1)
V3)3835.86 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.50 × 0.31 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.849, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
65482, 13850, 11056
Rint0.033
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.05
No. of reflections13850
No. of parameters509
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···O3Bi0.932.533.3040 (17)141
C7A—H7AB···O3Aii0.962.563.506 (2)171
C1B—H1BA···O3A0.932.313.2373 (17)172
C12B—H12B···O2Bi0.932.473.2817 (17)146
C7B—H7BA···O4Aii0.962.573.518 (2)171
C14B—H14B···O3Bi0.932.593.5204 (19)176
C15A—H15A···O2Aiii0.932.473.2626 (19)143
C17B—H17B···O3Bi0.932.583.474 (2)161
C20A—H20A···O4Aiv0.932.503.159 (2)128
C20B—H20B···O4Bv0.932.383.185 (2)144
C21A—H21C···O2Aiii0.962.293.162 (2)150
C21B—H21D···O2Bvi0.962.423.317 (2)156
C9A—H9AA···Cg3iii0.932.703.4423 (13)137
C11A—H11A···Cg30.932.593.3482 (13)139
C11B—H11B···Cg4vii0.932.773.5457 (14)142
C9B—H9BA···Cg4vi0.932.623.3442 (13)135
C21A—H21B···Cg2iii0.962.823.6853 (18)151
C21B—H21F···Cg1viii0.962.823.7100 (19)155
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y+3/2, z1/2; (vi) x+1, y+2, z; (vii) x+1, y+1/2, z+1/2; (viii) x, y+3/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. Partial financial support from the Graduate School, Prince of Songkla University is gratefully acknowledged. The authors also thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit and the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Rodwatcharapiban, P. & Fun, H.-K. (2006). Acta Cryst. E62, o5689–o5691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494–o5496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. & Spangler, C. W. (1991). J. Phys. Chem. 95, 10643–10652.  CrossRef CAS Web of Science Google Scholar
First citationCheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991). J. Phys. Chem. 95, 10631–10643.  CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1549-o1550
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds