organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Maleopimaric acid acetic acid solvate

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China
*Correspondence e-mail: zm205@sohu.com

(Received 15 June 2009; accepted 20 June 2009; online 27 June 2009)

The title compound, C24H32O5·C2H4O2, is a derivative of abietic acid. The two fused and unbridged cyclo­hexane rings have chair conformations and the anhydride ring is planar. Of the other three six-membered rings, two have boat conformations and one has a twist-boat conformation. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background, see: McCoy (2000[McCoy, M. (2000). Chem. Eng. News, 78, 13-15.]); Schweizer et al. (2003[Schweizer, R. A. S., Atanasoc, A. G., Frey, B. M. & Odermatt, A. (2003). Mol. Cell. Endocrinol. 212, 41-49.]); Savluchinske-Feio et al. (2007[Savluchinske-Feio, S., Nunes, L., Pereira, P. T., Silva, A. M., Roseiro, J. C., Gigante, B. & Curto, M. J. M. (2007). J. Microbiol. Methods, 70, 465-470.]). For the crystal structure of a similar compound, see: Pan et al. (2006[Pan, Y.-M., Yang, L., Wang, H.-S., Zhao, Z.-C. & Zhang, Y. (2006). Acta Cryst. E62, o5701-o5703.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H32O5·C2H4O2

  • Mr = 460.55

  • Orthorhombic, P 21 21 21

  • a = 7.9469 (10) Å

  • b = 12.7755 (16) Å

  • c = 24.884 (3) Å

  • V = 2526.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.97, Tmax = 0.98

  • 13853 measured reflections

  • 2837 independent reflections

  • 2432 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.110

  • S = 1.04

  • 2837 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4C⋯O6 0.93 1.70 2.617 (3) 169
O7—H7A⋯O5 0.93 1.76 2.681 (3) 171
C13—H13C⋯O5i 0.96 2.59 3.137 (5) 117
C26—H26B⋯O1ii 0.96 2.56 3.369 (4) 142
Symmetry codes: (i) x, y-1, z; (ii) x-1, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rosin, a versatile natural resin, possesses a rare combination of many desirable properties and has consequently found innumerable industrial uses in a modified form or in conjunction with other natural or synthetic resins (McCoy, 2000). Abietic type resin acid is the major component of gum rosin, including abietic acid, neoabietic acid, levo-pimaric acid, palustric acid and is a high quality biomass resource in developing chiral new drugs (Schweizer et al., 2003). Abietic acid and its derivatives are readily available hydrophenanthrene compounds which form useful starting materials for the design and synthesis of industrially and physiologically important products (Savluchinske-Feio et al.,2007).

The crystal structure of a similar compound, also a derivative of maleopimaric acid, has already been published (Pan et al., 2006). The molecular structure of the title compound, is shown in Fig. 1. The asymmetric unit consists of two molecules, viz. maleopimaric anhydride and acetic acid. The cyclohexane rings C5, C6, C14–C16, C21 and C16—C21 have typical chair forms. The cyclohexane ring C2–C7 has a slightly distorted twist-boat conformation; the other two six-membered rings adopt boat conformations. The configuration about the C9C10 bond is Z (Fig. 1), with the H atom and the isopropyl group cis with respect to each other. The bond lengths (Allen et al., 1987) and bond angles exhibit normal values. In the crystal structure, the molecules are linked (Fig.2) by O—H···O and C—H···O intermolecular hydrogen bonds, also by van der Waals forces.

Related literature top

For general background, see: McCoy (2000); Schweizer et al. (2003); Savluchinske-Feio et al. (2007). For the crystal structure of a similar compound, see: Pan et al. (2006). For standard bond-length data, see: Allen et al. (1987).

Experimental top

Rosin (10.0 g), acetic acid (7 ml), and maleic anhydride (3.0 g) were put into a 50-ml three-necked flask and magnetically stirred; the mixture was stirred for 20 min with power 450w. The solution was put into 5 ml glacial acetic acid and cooled, washed with hot water (10 ml), dried (MgSO4), and concentrated to dryness. Recrystallization from ethanol afforded the adduct (7.5 g, 50%).

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq, but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms,with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C); O—H = 0.93 Å and Uiso(H) = 1.2Ueq(O). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.
Maleopimaric acid acetic acid solvate top
Crystal data top
C24H32O5·C2H4O2Dx = 1.211 Mg m3
Mr = 460.55Melting point: 498 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3636 reflections
a = 7.9469 (10) Åθ = 2.3–23.2°
b = 12.7755 (16) ŵ = 0.09 mm1
c = 24.884 (3) ÅT = 291 K
V = 2526.3 (5) Å3Block, colorless
Z = 40.30 × 0.26 × 0.24 mm
F(000) = 992
Data collection top
Bruker SMART APEX CCD
diffractometer
2837 independent reflections
Radiation source: sealed tube2432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.97, Tmax = 0.98k = 1515
13853 measured reflectionsl = 2730
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.05P)2 + 0.55P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2837 reflectionsΔρmax = 0.19 e Å3
304 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0076 (9)
Crystal data top
C24H32O5·C2H4O2V = 2526.3 (5) Å3
Mr = 460.55Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9469 (10) ŵ = 0.09 mm1
b = 12.7755 (16) ÅT = 291 K
c = 24.884 (3) Å0.30 × 0.26 × 0.24 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2837 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2432 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.98Rint = 0.059
13853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
2837 reflectionsΔρmin = 0.17 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The Friedel pairs have been merged in the absence of anomalous scattering.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5002 (4)0.1408 (3)0.21013 (13)0.0419 (7)
C20.5980 (4)0.0411 (2)0.20070 (12)0.0398 (7)
H20.67940.03010.22970.048*
C30.6887 (4)0.0420 (2)0.14559 (13)0.0417 (7)
H30.76960.09980.14340.050*
C40.7802 (4)0.0670 (2)0.14272 (13)0.0426 (7)
H4A0.86160.07230.17160.051*
H4B0.84000.07300.10890.051*
C50.6514 (4)0.1559 (2)0.14754 (14)0.0411 (7)
H50.66830.18670.18320.049*
C60.4713 (4)0.1086 (2)0.14794 (13)0.0414 (7)
C70.4657 (4)0.0448 (2)0.20125 (12)0.0409 (7)
H70.48510.09160.23180.049*
C80.3020 (4)0.0147 (3)0.20917 (13)0.0442 (8)
C90.4523 (4)0.0321 (3)0.10233 (12)0.0429 (7)
H90.36870.03900.07640.052*
C100.5648 (4)0.0472 (3)0.10145 (12)0.0453 (8)
C110.5732 (5)0.1285 (3)0.05890 (15)0.0552 (10)
H110.67730.12030.03830.066*
C120.4230 (5)0.1334 (3)0.02054 (15)0.0553 (10)
H12A0.32190.14550.04070.083*
H12B0.43910.18950.00460.083*
H12C0.41370.06830.00150.083*
C130.5604 (5)0.2392 (3)0.07953 (13)0.0503 (9)
H13A0.64370.25030.10690.075*
H13B0.57880.28730.05050.075*
H13C0.45040.25050.09440.075*
C140.3351 (4)0.1953 (2)0.14874 (13)0.0434 (7)
H14A0.22670.16420.14060.052*
H14B0.32870.22470.18460.052*
C150.3695 (4)0.2827 (2)0.10897 (13)0.0427 (8)
H15A0.36300.25550.07260.051*
H15B0.28490.33690.11280.051*
C160.5419 (4)0.3288 (2)0.11854 (13)0.0409 (7)
H160.54850.34050.15740.049*
C170.5691 (4)0.4405 (3)0.09213 (12)0.0408 (7)
C180.7484 (4)0.4797 (3)0.10755 (14)0.0442 (8)
H18A0.77070.54530.08930.053*
H18B0.75280.49250.14590.053*
C190.8818 (4)0.4017 (3)0.09266 (15)0.0491 (9)
H19A0.99120.42930.10260.059*
H19B0.88090.39140.05400.059*
C200.8550 (4)0.2952 (3)0.12078 (14)0.0450 (8)
H20A0.86160.30470.15940.054*
H20B0.94370.24740.11020.054*
C210.6810 (4)0.2471 (2)0.10598 (12)0.0405 (7)
C220.6830 (4)0.2061 (3)0.04687 (12)0.0429 (7)
H22A0.57010.19060.03570.064*
H22B0.75010.14370.04490.064*
H22C0.73000.25870.02380.064*
C230.5378 (5)0.4443 (3)0.03186 (12)0.0445 (7)
H23A0.41920.45080.02520.067*
H23B0.57890.38120.01560.067*
H23C0.59550.50340.01680.067*
C240.4419 (4)0.5116 (3)0.11930 (13)0.0426 (7)
C250.1024 (4)0.6778 (3)0.18987 (14)0.0460 (8)
C260.0272 (4)0.7410 (3)0.21888 (13)0.0484 (8)
H26A0.03300.71870.25570.073*
H26B0.13480.73130.20210.073*
H26C0.00310.81370.21750.073*
O10.5518 (3)0.22935 (16)0.21417 (9)0.0463 (6)
O20.3332 (3)0.12062 (18)0.21447 (10)0.0472 (6)
O30.1594 (3)0.01506 (17)0.21128 (9)0.0453 (5)
O40.4493 (3)0.51827 (17)0.17031 (8)0.0455 (6)
H4C0.37280.56020.18870.055*
O50.3379 (3)0.55953 (19)0.09249 (8)0.0472 (6)
O60.2043 (3)0.62457 (17)0.21453 (9)0.0465 (6)
O70.1034 (3)0.68154 (18)0.13804 (9)0.0462 (6)
H7A0.18310.64300.11910.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0453 (18)0.0411 (16)0.0395 (17)0.0089 (14)0.0018 (14)0.0098 (14)
C20.0398 (17)0.0409 (17)0.0389 (16)0.0087 (14)0.0007 (13)0.0023 (13)
C30.0443 (17)0.0377 (15)0.0431 (17)0.0077 (14)0.0041 (15)0.0005 (13)
C40.0427 (17)0.0423 (17)0.0428 (17)0.0049 (14)0.0031 (14)0.0012 (14)
C50.0417 (17)0.0386 (16)0.0430 (17)0.0036 (13)0.0036 (15)0.0003 (13)
C60.0400 (16)0.0405 (16)0.0437 (17)0.0004 (13)0.0006 (15)0.0001 (14)
C70.0403 (17)0.0403 (16)0.0420 (17)0.0049 (14)0.0029 (14)0.0019 (13)
C80.0434 (18)0.0452 (18)0.0441 (18)0.0096 (15)0.0095 (15)0.0081 (14)
C90.0470 (17)0.0430 (17)0.0388 (16)0.0055 (15)0.0113 (15)0.0024 (13)
C100.0439 (18)0.0488 (19)0.0433 (17)0.0118 (15)0.0043 (15)0.0102 (14)
C110.067 (2)0.0469 (19)0.051 (2)0.0168 (19)0.0152 (19)0.0133 (16)
C120.059 (2)0.050 (2)0.057 (2)0.0163 (18)0.0149 (19)0.0216 (17)
C130.0488 (19)0.056 (2)0.0461 (19)0.0147 (17)0.0107 (16)0.0149 (15)
C140.0414 (17)0.0470 (17)0.0418 (17)0.0044 (15)0.0055 (15)0.0019 (14)
C150.0506 (19)0.0365 (16)0.0411 (17)0.0070 (15)0.0127 (15)0.0028 (13)
C160.0417 (17)0.0392 (16)0.0418 (17)0.0102 (14)0.0007 (14)0.0027 (13)
C170.0387 (16)0.0441 (17)0.0397 (15)0.0031 (14)0.0028 (14)0.0037 (14)
C180.0451 (17)0.0406 (18)0.0469 (18)0.0079 (15)0.0056 (15)0.0080 (14)
C190.0444 (18)0.051 (2)0.0522 (19)0.0018 (15)0.0170 (16)0.0135 (16)
C200.0445 (18)0.0445 (18)0.0459 (18)0.0015 (15)0.0029 (15)0.0114 (15)
C210.0416 (17)0.0394 (16)0.0406 (16)0.0058 (14)0.0125 (14)0.0013 (13)
C220.0426 (17)0.0441 (17)0.0420 (17)0.0118 (15)0.0126 (14)0.0080 (14)
C230.0463 (18)0.0417 (17)0.0456 (17)0.0112 (15)0.0012 (15)0.0056 (14)
C240.0422 (17)0.0411 (17)0.0443 (17)0.0118 (15)0.0131 (14)0.0023 (13)
C250.0419 (18)0.0466 (18)0.0496 (19)0.0143 (15)0.0064 (15)0.0150 (15)
C260.0450 (18)0.0536 (19)0.0468 (18)0.0114 (16)0.0139 (16)0.0172 (16)
O10.0498 (13)0.0413 (12)0.0480 (12)0.0178 (11)0.0177 (12)0.0161 (10)
O20.0437 (13)0.0468 (12)0.0511 (13)0.0058 (11)0.0054 (12)0.0177 (10)
O30.0417 (13)0.0465 (12)0.0477 (12)0.0104 (11)0.0100 (11)0.0107 (10)
O40.0480 (13)0.0462 (12)0.0422 (12)0.0174 (11)0.0129 (11)0.0074 (9)
O50.0502 (13)0.0539 (14)0.0376 (11)0.0186 (11)0.0092 (11)0.0108 (10)
O60.0465 (13)0.0495 (13)0.0436 (12)0.0148 (11)0.0067 (11)0.0144 (10)
O70.0442 (13)0.0469 (12)0.0475 (13)0.0169 (10)0.0119 (10)0.0153 (11)
Geometric parameters (Å, º) top
C1—O11.207 (4)C14—H14B0.9700
C1—O21.356 (4)C15—C161.510 (5)
C1—C21.511 (5)C15—H15A0.9700
C2—C71.520 (4)C15—H15B0.9700
C2—C31.550 (4)C16—C211.552 (4)
C2—H20.9800C16—C171.586 (4)
C3—C101.477 (5)C16—H160.9800
C3—C41.573 (4)C17—C241.518 (5)
C3—H30.9800C17—C231.521 (4)
C4—C51.533 (4)C17—C181.558 (5)
C4—H4A0.9700C18—C191.501 (5)
C4—H4B0.9700C18—H18A0.9700
C5—C61.553 (4)C18—H18B0.9700
C5—C211.576 (4)C19—C201.544 (4)
C5—H50.9800C19—H19A0.9700
C6—C91.505 (4)C19—H19B0.9700
C6—C141.549 (4)C20—C211.557 (5)
C6—C71.557 (4)C20—H20A0.9700
C7—C81.519 (5)C20—H20B0.9700
C7—H70.9800C21—C221.561 (4)
C8—O31.197 (4)C22—H22A0.9600
C8—O21.382 (4)C22—H22B0.9600
C9—C101.351 (5)C22—H22C0.9600
C9—H90.9300C23—H23A0.9600
C10—C111.485 (4)C23—H23B0.9600
C11—C131.507 (5)C23—H23C0.9600
C11—C121.529 (5)C24—O51.226 (4)
C11—H110.9800C24—O41.274 (4)
C12—H12A0.9600C25—O61.223 (4)
C12—H12B0.9600C25—O71.291 (4)
C12—H12C0.9600C25—C261.494 (5)
C13—H13A0.9600C26—H26A0.9600
C13—H13B0.9600C26—H26B0.9600
C13—H13C0.9600C26—H26C0.9600
C14—C151.517 (4)O4—H4C0.9300
C14—H14A0.9700O7—H7A0.9300
O1—C1—O2120.3 (3)H14A—C14—H14B107.8
O1—C1—C2128.9 (3)C16—C15—C14110.3 (3)
O2—C1—C2110.8 (3)C16—C15—H15A109.6
C1—C2—C7104.6 (3)C14—C15—H15A109.6
C1—C2—C3111.8 (3)C16—C15—H15B109.6
C7—C2—C3109.6 (2)C14—C15—H15B109.6
C1—C2—H2110.3H15A—C15—H15B108.1
C7—C2—H2110.3C15—C16—C21110.7 (3)
C3—C2—H2110.3C15—C16—C17114.1 (3)
C10—C3—C2110.4 (3)C21—C16—C17115.1 (3)
C10—C3—C4108.3 (3)C15—C16—H16105.3
C2—C3—C4104.4 (3)C21—C16—H16105.3
C10—C3—H3111.2C17—C16—H16105.3
C2—C3—H3111.2C24—C17—C23108.1 (3)
C4—C3—H3111.2C24—C17—C18107.9 (3)
C5—C4—C3110.1 (3)C23—C17—C18112.5 (3)
C5—C4—H4A109.6C24—C17—C16105.3 (3)
C3—C4—H4A109.6C23—C17—C16114.5 (3)
C5—C4—H4B109.6C18—C17—C16108.2 (3)
C3—C4—H4B109.6C19—C18—C17111.8 (3)
H4A—C4—H4B108.2C19—C18—H18A109.2
C4—C5—C6109.1 (2)C17—C18—H18A109.2
C4—C5—C21113.4 (3)C19—C18—H18B109.2
C6—C5—C21115.4 (3)C17—C18—H18B109.2
C4—C5—H5106.1H18A—C18—H18B107.9
C6—C5—H5106.1C18—C19—C20112.0 (3)
C21—C5—H5106.1C18—C19—H19A109.2
C9—C6—C14113.8 (3)C20—C19—H19A109.2
C9—C6—C5109.9 (3)C18—C19—H19B109.2
C14—C6—C5111.5 (2)C20—C19—H19B109.2
C9—C6—C7107.5 (3)H19A—C19—H19B107.9
C14—C6—C7110.1 (3)C19—C20—C21111.3 (3)
C5—C6—C7103.6 (3)C19—C20—H20A109.4
C8—C7—C2103.4 (2)C21—C20—H20A109.4
C8—C7—C6113.4 (3)C19—C20—H20B109.4
C2—C7—C6110.5 (3)C21—C20—H20B109.4
C8—C7—H7109.8H20A—C20—H20B108.0
C2—C7—H7109.8C16—C21—C20108.6 (3)
C6—C7—H7109.8C16—C21—C22115.0 (3)
O3—C8—O2118.4 (3)C20—C21—C22110.3 (3)
O3—C8—C7131.1 (3)C16—C21—C5105.0 (2)
O2—C8—C7110.4 (3)C20—C21—C5105.6 (3)
C10—C9—C6115.6 (3)C22—C21—C5111.8 (3)
C10—C9—H9122.2C21—C22—H22A109.5
C6—C9—H9122.2C21—C22—H22B109.5
C9—C10—C3113.3 (3)H22A—C22—H22B109.5
C9—C10—C11124.5 (3)C21—C22—H22C109.5
C3—C10—C11122.1 (3)H22A—C22—H22C109.5
C10—C11—C13114.2 (3)H22B—C22—H22C109.5
C10—C11—C12116.0 (3)C17—C23—H23A109.5
C13—C11—C1297.0 (3)C17—C23—H23B109.5
C10—C11—H11109.7H23A—C23—H23B109.5
C13—C11—H11109.7C17—C23—H23C109.5
C12—C11—H11109.7H23A—C23—H23C109.5
C11—C12—H12A109.5H23B—C23—H23C109.5
C11—C12—H12B109.5O5—C24—O4122.7 (3)
H12A—C12—H12B109.5O5—C24—C17120.4 (3)
C11—C12—H12C109.5O4—C24—C17116.9 (3)
H12A—C12—H12C109.5O6—C25—O7121.2 (3)
H12B—C12—H12C109.5O6—C25—C26121.0 (3)
C11—C13—H13A109.5O7—C25—C26117.9 (3)
C11—C13—H13B109.5C25—C26—H26A109.5
H13A—C13—H13B109.5C25—C26—H26B109.5
C11—C13—H13C109.5H26A—C26—H26B109.5
H13A—C13—H13C109.5C25—C26—H26C109.5
H13B—C13—H13C109.5H26A—C26—H26C109.5
C15—C14—C6113.1 (3)H26B—C26—H26C109.5
C15—C14—H14A109.0C1—O2—C8110.7 (3)
C6—C14—H14A109.0C24—O4—H4C119.9
C15—C14—H14B109.0C25—O7—H7A119.5
C6—C14—H14B109.0
O1—C1—C2—C7178.2 (3)C3—C10—C11—C12171.8 (3)
O2—C1—C2—C71.4 (4)C9—C6—C14—C1579.4 (3)
O1—C1—C2—C363.3 (5)C5—C6—C14—C1545.5 (4)
O2—C1—C2—C3117.1 (3)C7—C6—C14—C15159.9 (3)
C1—C2—C3—C1063.1 (3)C6—C14—C15—C1655.4 (4)
C7—C2—C3—C1052.4 (3)C14—C15—C16—C2166.0 (3)
C1—C2—C3—C4179.3 (3)C14—C15—C16—C17162.3 (3)
C7—C2—C3—C463.8 (3)C15—C16—C17—C2462.4 (3)
C10—C3—C4—C558.8 (3)C21—C16—C17—C24168.1 (3)
C2—C3—C4—C558.8 (3)C15—C16—C17—C2356.2 (4)
C3—C4—C5—C65.6 (4)C21—C16—C17—C2373.3 (4)
C3—C4—C5—C21135.8 (3)C15—C16—C17—C18177.5 (3)
C4—C5—C6—C948.9 (3)C21—C16—C17—C1853.0 (3)
C21—C5—C6—C980.1 (3)C24—C17—C18—C19167.7 (3)
C4—C5—C6—C14176.0 (3)C23—C17—C18—C1973.2 (4)
C21—C5—C6—C1447.0 (4)C16—C17—C18—C1954.3 (3)
C4—C5—C6—C765.7 (3)C17—C18—C19—C2059.5 (4)
C21—C5—C6—C7165.3 (3)C18—C19—C20—C2159.2 (4)
C1—C2—C7—C81.8 (3)C15—C16—C21—C20175.5 (3)
C3—C2—C7—C8118.1 (3)C17—C16—C21—C2053.2 (3)
C1—C2—C7—C6123.5 (3)C15—C16—C21—C2260.3 (4)
C3—C2—C7—C63.5 (4)C17—C16—C21—C2270.9 (4)
C9—C6—C7—C860.5 (3)C15—C16—C21—C562.9 (3)
C14—C6—C7—C864.0 (3)C17—C16—C21—C5165.8 (3)
C5—C6—C7—C8176.7 (2)C19—C20—C21—C1654.0 (3)
C9—C6—C7—C255.1 (3)C19—C20—C21—C2272.8 (3)
C14—C6—C7—C2179.5 (3)C19—C20—C21—C5166.2 (3)
C5—C6—C7—C261.2 (3)C4—C5—C21—C16178.6 (3)
C2—C7—C8—O3178.1 (4)C6—C5—C21—C1654.4 (3)
C6—C7—C8—O358.4 (5)C4—C5—C21—C2063.9 (3)
C2—C7—C8—O21.8 (3)C6—C5—C21—C20169.2 (3)
C6—C7—C8—O2121.5 (3)C4—C5—C21—C2256.1 (4)
C14—C6—C9—C10177.5 (3)C6—C5—C21—C2270.9 (3)
C5—C6—C9—C1056.7 (4)C23—C17—C24—O50.2 (4)
C7—C6—C9—C1055.3 (4)C18—C17—C24—O5122.0 (3)
C6—C9—C10—C31.2 (4)C16—C17—C24—O5122.7 (3)
C6—C9—C10—C11177.3 (3)C23—C17—C24—O4180.0 (3)
C2—C3—C10—C957.3 (4)C18—C17—C24—O458.1 (4)
C4—C3—C10—C956.4 (4)C16—C17—C24—O457.2 (4)
C2—C3—C10—C11126.5 (3)O1—C1—O2—C8179.4 (3)
C4—C3—C10—C11119.8 (4)C2—C1—O2—C80.2 (4)
C9—C10—C11—C13124.0 (4)O3—C8—O2—C1178.9 (3)
C3—C10—C11—C1360.1 (5)C7—C8—O2—C11.1 (4)
C9—C10—C11—C1212.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···O60.931.702.617 (3)169
O7—H7A···O50.931.762.681 (3)171
C13—H13C···O5i0.962.593.137 (5)117
C26—H26B···O1ii0.962.563.369 (4)142
Symmetry codes: (i) x, y1, z; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H32O5·C2H4O2
Mr460.55
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)7.9469 (10), 12.7755 (16), 24.884 (3)
V3)2526.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.97, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
13853, 2837, 2432
Rint0.059
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.04
No. of reflections2837
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···O60.931.702.617 (3)169
O7—H7A···O50.931.762.681 (3)171
C13—H13C···O5i0.962.593.137 (5)117
C26—H26B···O1ii0.962.563.369 (4)142
Symmetry codes: (i) x, y1, z; (ii) x1, y+1, z.
 

Acknowledgements

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMcCoy, M. (2000). Chem. Eng. News, 78, 13–15.  Google Scholar
First citationPan, Y.-M., Yang, L., Wang, H.-S., Zhao, Z.-C. & Zhang, Y. (2006). Acta Cryst. E62, o5701–o5703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavluchinske-Feio, S., Nunes, L., Pereira, P. T., Silva, A. M., Roseiro, J. C., Gigante, B. & Curto, M. J. M. (2007). J. Microbiol. Methods, 70, 465–470.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchweizer, R. A. S., Atanasoc, A. G., Frey, B. M. & Odermatt, A. (2003). Mol. Cell. Endocrinol. 212, 41–49.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds