organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1755-o1756

2,6-Dide­­oxy-2,6-imino-L-glycero-D-ido-heptitol

aDepartment of Organic Chemistry, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, cSummit PLC, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, Wales, and dDepartment of Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 23 June 2009; accepted 29 June 2009; online 4 July 2009)

The title mol­ecule, C7H15NO5, the major product from selective enzymatic oxidation followed by hydrogeno­lysis of the corresponding azido­heptitol, was found by X-ray crystallography to exisit in a chair conformation with three axial hydroxyl groups. One of the hydroxymethyl groups is disordered over two sets of sites in a 0.590 (3):0.410 (3) ratio. In the crystal, O—H⋯O, O—H⋯(O,O), O—H⋯N and N—H⋯O hydrogen bonding occurs.

Related literature

For the synthesis of homonojirimycin derivatives, see: Compain et al. (2009[Compain, P., Chagnault, V. & Martin, O. R. (2009). Tetrahedron Asymmetry, 20, 672-711.]); Asano et al. (2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]); Watson et al. (2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]); Ikeda et al. (2000[Ikeda, K., Takahashi, M., Nishida, M., Miyauchi, M., Kizu, H., Kameda, Y., Arisawa, M., Watson, A. A., Nash, R. J., Fleet, G. W. J. & Asano, N. (2000). Carbohydr. Res. 323, 73-80.]); Asano et al. (1998[Asano, N., Nishida, M., Kato, A., Kizu, H., Matsui, K., Shimada, Y., Itoh, T., Baba, M., Watson, A. A., Nash, R. J., Lilley, P. M. D., Watkin, D. J. & Fleet, G. W. J. (1998). J. Med. Chem. 41, 2565-2571.]); Kite et al. (1988[Kite, G. C., Fellows, L. E., Fleet, G. W. J., Liu, P. S., Scofield, A. M. & Smith, N. G. (1988). Tetrahedron Lett. 29, 6483-6486.]); Dondoni & Nuzzi (2006[Dondoni, A. & Nuzzi, A. (2006). J. Org. Chem. 71, 7574-7582.]). For the biological applications of homonojirimycin derivatives, see: Compain et al. (2006[Compain, P., Martin, O. R., Boucheron, C., Godin, G., Yu, L. & Asano, N. (2006). Chem. Biol. Chem. 7, 1356-1359.]). For related literature on Izumoring technology, see: Izumori et al. (2002[Izumori, K. J. (2002). Naturwissenschaften, 89, 120-124.], 2006[Izumori, K. J. (2006). Biotechnology, 124, 717-722.]); Yoshihara et al. (2008[Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739-745.]); Rao et al. (2008[Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett. 49, 3316-3121.]); Jones et al. (2008[Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904-1918.]). For related crystallography literature, see: Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]).

[Scheme 1]

Experimental

Crystal data
  • C7H15NO5

  • Mr = 193.20

  • Monoclinic, P 21 /c

  • a = 10.2907 (3) Å

  • b = 7.6035 (3) Å

  • c = 11.0057 (3) Å

  • β = 91.8668 (16)°

  • V = 860.69 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 K

  • 0.50 × 0.50 × 0.20 mm

Data collection
  • Area diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.81, Tmax = 0.98

  • 7892 measured reflections

  • 1944 independent reflections

  • 1609 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 0.99

  • 1944 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H141⋯O16i 0.80 1.89 2.684 (3) 170
O16—H161⋯N1ii 0.84 1.96 2.793 (3) 171
N1—H11⋯O12iii 0.84 2.17 2.996 (3) 165
O13—H131⋯O8iv 0.79 1.97 2.739 (3) 165
O13—H131⋯O11iv 0.79 2.08 2.824 (3) 158
O12—H121⋯O14v 0.85 2.39 3.052 (3) 136
O8—H81⋯O13vi 0.83 2.00 2.805 (3) 164
O11—H111⋯O13vi 0.82 2.02 2.843 (3) 173
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y-1, z; (v) -x+2, -y+1, -z+2; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The methodology developed by Izumori (2002, 2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008) and branched sugars (Rao et al., 2008; Jones et al., 2008). This methodology has now also been applied to azido heptitols and thus to the synthesis of 2,6-dideoxy-2,6-iminoheptitols (homonojirimycins); these seven carbon imino sugars (Compain et al., 2009; Asano et al., 2000; Watson et al., 2001), are a family of glycosidase inhibitors. A number of homonojrimycins have been isolated as natural products from medicinal plants (Ikeda et al., 2000; Asano et al., 1998; Kite et al., 1988). Other piperidines with all the ring hydroxyl groups axial have been shown to be very powerful glycosidase inhibitors (Compain et al., 2006).

The azido heptitol 1 was synthesized from readily available D-glycero-D-gulo-heptono-1,4-lactone and underwent selective enzymatic oxidation to the ketose 2 followed by hydrogenation with closure on either face of the ketone to generate the imino sugars 3 and 4 (Fig. 1). The major product was found to be the symmetrical homonorjirimycin 3 and its structure was confirmed by X-ray crystallography.

The X-ray structure shows that the compound adopts a chair conformation with 3 axial hydroxyl substituents (Fig. 2). There is significant disorder in the structure with one of the equatorial hydroxymethyl groups occupying two possible sites each of which is able to form a hydrogen bond.The crystal exists as an extensively hydrogen bonded lattice with each molecule acting as a donor and an acceptor for 8 hydrogen bonds (Fig. 3).

Related literature top

For the synthesis of homonojirimycin derivatives, see: Compain et al. (2009); Asano et al. (2000); Watson et al. (2001); Ikeda et al. (2000); Asano et al. (1998); Kite et al. (1988); Dondoni & Nuzzi (2006). For the biological applications of homonojirimycin derivatives, see: Compain et al. (2006). For related literature on the Izumoring technology, see: Izumori et al. (2002, 2006); Yoshihara et al. (2008); Rao et al. (2008); Jones et al. (2008). For related literature, see: Görbitz (1999).

Experimental top

The title compound was recrystallized from mixture of 95% ethanol and 5% water layered with acetone: m.p. 442–445 K (free base); [α]D25 0.0 (c, 1.27 in MeOH) (HCl salt). All other data was consistent with the literature data for the HCl salt (Dondoni & Nuzzi, 2006).

Refinement top

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.21) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic Scheme.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. Packing diagram for the title compound. The compound exists as an extensively hydrogen bonded network (dotted lines).
2,6-Dideoxy-2,6-imino-L-glycero-D-ido-heptitol top
Crystal data top
C7H15NO5F(000) = 416
Mr = 193.20Dx = 1.491 Mg m3
Monoclinic, P21/cMelting point = 442–445 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.2907 (3) ÅCell parameters from 1957 reflections
b = 7.6035 (3) Åθ = 5–27°
c = 11.0057 (3) ŵ = 0.13 mm1
β = 91.8668 (16)°T = 150 K
V = 860.69 (5) Å3Block, colourless
Z = 40.50 × 0.50 × 0.20 mm
Data collection top
Area
diffractometer
1609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.81, Tmax = 0.98k = 99
7892 measured reflectionsl = 1414
1944 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(F2) + (0.04P)2 + 0.51P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.00(Δ/σ)max = 0.000337
1944 reflectionsΔρmax = 0.33 e Å3
137 parametersΔρmin = 0.32 e Å3
0 restraints
Crystal data top
C7H15NO5V = 860.69 (5) Å3
Mr = 193.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2907 (3) ŵ = 0.13 mm1
b = 7.6035 (3) ÅT = 150 K
c = 11.0057 (3) Å0.50 × 0.50 × 0.20 mm
β = 91.8668 (16)°
Data collection top
Area
diffractometer
1944 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1609 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.98Rint = 0.030
7892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
1944 reflectionsΔρmin = 0.32 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.80811 (11)0.66935 (14)0.76944 (10)0.0174
C20.82099 (13)0.48495 (17)0.72876 (11)0.0140
C30.81825 (12)0.36103 (16)0.83746 (11)0.0123
C40.69637 (12)0.38977 (18)0.91183 (12)0.0165
C50.68068 (13)0.5840 (2)0.94446 (13)0.0224
C60.68515 (14)0.69847 (18)0.83143 (14)0.02330.590 (3)
C70.6593 (4)0.8833 (5)0.8777 (4)0.01760.590 (3)
O80.63068 (17)0.9958 (2)0.77658 (16)0.02160.590 (3)
C90.68515 (14)0.69847 (18)0.83143 (14)0.02330.410 (3)
C100.6878 (5)0.9060 (7)0.8365 (5)0.01810.410 (3)
O110.5595 (2)0.9664 (3)0.8625 (2)0.02160.410 (3)
O120.77676 (10)0.63650 (15)1.03344 (9)0.0255
O130.58223 (9)0.33556 (13)0.84432 (9)0.0203
O140.93148 (8)0.39490 (12)0.91177 (8)0.0165
C150.94645 (14)0.46860 (18)0.66037 (12)0.0197
O160.96317 (10)0.29326 (13)0.61694 (8)0.0198
H210.74580.45280.67380.0157*
H310.81910.23780.80900.0130*
H410.70610.32080.98840.0187*
H610.61190.66290.77520.0259*0.590 (3)
H720.73760.92760.92060.0197*0.590 (3)
H710.58680.88320.93580.0206*0.590 (3)
H910.61280.66220.77530.0259*0.410 (3)
H1010.74930.94370.90070.0210*0.410 (3)
H1020.71640.95630.75890.0216*0.410 (3)
H1521.02130.49900.71550.0218*
H1510.94330.55240.58970.0228*
H1410.93540.32930.96870.0234*
H1611.03330.25010.64440.0297*
H510.59380.59920.98150.0254*
H110.81000.73670.70860.0211*
H1310.58420.23330.83120.0306*
H1210.84870.59301.01310.0367*
H810.57520.95420.72870.0322*0.590 (3)
H1110.51260.93230.80510.0290*0.410 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0274 (6)0.0091 (5)0.0154 (5)0.0007 (4)0.0047 (5)0.0028 (4)
C20.0195 (6)0.0112 (6)0.0112 (6)0.0011 (5)0.0025 (5)0.0008 (5)
C30.0128 (6)0.0108 (6)0.0131 (6)0.0006 (5)0.0020 (5)0.0003 (5)
C40.0124 (6)0.0209 (7)0.0162 (6)0.0015 (5)0.0006 (5)0.0015 (5)
C50.0140 (6)0.0270 (8)0.0261 (7)0.0001 (5)0.0015 (5)0.0142 (6)
C60.0182 (7)0.0147 (7)0.0360 (8)0.0060 (5)0.0121 (6)0.0108 (6)
C70.0178 (18)0.0121 (15)0.0228 (19)0.0025 (12)0.0007 (13)0.0022 (14)
O80.0237 (10)0.0108 (8)0.0296 (10)0.0017 (7)0.0075 (8)0.0001 (7)
C90.0182 (7)0.0147 (7)0.0360 (8)0.0060 (5)0.0121 (6)0.0108 (6)
C100.016 (2)0.011 (2)0.027 (3)0.0000 (17)0.0016 (19)0.003 (2)
O110.0181 (13)0.0185 (13)0.0281 (14)0.0063 (9)0.0002 (10)0.0055 (10)
O120.0200 (5)0.0358 (6)0.0207 (5)0.0033 (4)0.0012 (4)0.0153 (4)
O130.0139 (5)0.0153 (5)0.0313 (5)0.0006 (4)0.0040 (4)0.0058 (4)
O140.0143 (5)0.0191 (5)0.0158 (4)0.0021 (4)0.0047 (3)0.0067 (4)
C150.0268 (7)0.0179 (7)0.0147 (6)0.0055 (5)0.0042 (5)0.0021 (5)
O160.0218 (5)0.0215 (5)0.0159 (4)0.0025 (4)0.0009 (4)0.0073 (4)
Geometric parameters (Å, º) top
N1—C21.4791 (16)C7—O81.427 (4)
N1—C61.4738 (19)C7—H720.981
N1—H110.844C7—H710.998
C2—C31.5238 (17)O8—H810.827
C2—C151.5206 (19)C9—C101.579 (6)
C2—H210.997C9—H910.991
C3—C41.5355 (17)C10—O111.435 (6)
C3—O141.4251 (14)C10—H1010.976
C3—H310.988C10—H1020.989
C4—C51.5295 (19)O11—H1110.824
C4—O131.4300 (15)O12—H1210.847
C4—H410.995O13—H1310.791
C5—C61.520 (2)O14—H1410.801
C5—O121.4258 (16)C15—O161.4286 (16)
C5—H511.002C15—H1520.992
C6—C71.521 (4)C15—H1511.005
C6—H610.997O16—H1610.840
C2—N1—C6111.67 (10)C7—C6—H61108.8
C2—N1—H11109.3C6—C7—O8109.1 (3)
C6—N1—H11108.6C6—C7—H72109.2
N1—C2—C3110.14 (10)O8—C7—H72108.4
N1—C2—C15108.25 (10)C6—C7—H71110.9
C3—C2—C15112.07 (11)O8—C7—H71111.1
N1—C2—H21109.9H72—C7—H71108.1
C3—C2—H21106.9C7—O8—H81112.8
C15—C2—H21109.6C5—C9—N1110.01 (11)
C2—C3—C4111.52 (10)C5—C9—C10123.0 (2)
C2—C3—O14107.64 (10)N1—C9—C1098.8 (2)
C4—C3—O14109.59 (10)C5—C9—H91108.0
C2—C3—H31109.7N1—C9—H91108.0
C4—C3—H31108.6C10—C9—H91108.2
O14—C3—H31109.8C9—C10—O11108.2 (4)
C3—C4—C5110.91 (11)C9—C10—H101109.2
C3—C4—O13110.69 (10)O11—C10—H101110.0
C5—C4—O13108.00 (11)C9—C10—H102111.2
C3—C4—H41108.4O11—C10—H102110.4
C5—C4—H41108.6H101—C10—H102107.9
O13—C4—H41110.3C10—O11—H111105.5
C4—C5—C6110.76 (11)C5—O12—H121107.5
C4—C5—O12110.82 (12)C4—O13—H131110.7
C6—C5—O12111.27 (12)C3—O14—H141110.9
C4—C5—H51108.0C2—C15—O16110.82 (11)
C6—C5—H51108.6C2—C15—H152109.5
O12—C5—H51107.2O16—C15—H152108.8
C5—C6—N1110.01 (11)C2—C15—H151108.9
C5—C6—C7104.18 (18)O16—C15—H151109.5
N1—C6—C7117.11 (18)H152—C15—H151109.3
C5—C6—H61108.1C15—O16—H161110.8
N1—C6—H61108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H71···C51.062.473.279 (3)132
O8—H102···N10.962.383.084 (3)130
O14—H141···O16i0.801.892.684 (3)170
O16—H161···N1ii0.841.962.793 (3)171
N1—H11···O12iii0.842.172.996 (3)165
O13—H131···O8iv0.791.972.739 (3)165
O13—H131···O11iv0.792.082.824 (3)158
O12—H121···O140.852.072.800 (3)143
O12—H121···O14v0.852.393.052 (3)136
O8—H81···O13vi0.832.002.805 (3)164
O11—H111···O13vi0.822.022.843 (3)173
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x, y1, z; (v) x+2, y+1, z+2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H15NO5
Mr193.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.2907 (3), 7.6035 (3), 11.0057 (3)
β (°) 91.8668 (16)
V3)860.69 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.50 × 0.50 × 0.20
Data collection
DiffractometerArea
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.81, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
7892, 1944, 1609
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.00
No. of reflections1944
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.32

Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H141···O16i0.801.892.684 (3)170
O16—H161···N1ii0.841.962.793 (3)171
N1—H11···O12iii0.842.172.996 (3)165
O13—H131···O8iv0.791.972.739 (3)165
O13—H131···O11iv0.792.082.824 (3)158
O12—H121···O14v0.852.393.052 (3)136
O8—H81···O13vi0.832.002.805 (3)164
O11—H111···O13vi0.822.022.843 (3)173
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x, y1, z; (v) x+2, y+1, z+2; (vi) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationAsano, N., Nishida, M., Kato, A., Kizu, H., Matsui, K., Shimada, Y., Itoh, T., Baba, M., Watson, A. A., Nash, R. J., Lilley, P. M. D., Watkin, D. J. & Fleet, G. W. J. (1998). J. Med. Chem. 41, 2565–2571.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCompain, P., Chagnault, V. & Martin, O. R. (2009). Tetrahedron Asymmetry, 20, 672–711.  Web of Science CrossRef CAS Google Scholar
First citationCompain, P., Martin, O. R., Boucheron, C., Godin, G., Yu, L. & Asano, N. (2006). Chem. Biol. Chem. 7, 1356–1359.  CrossRef CAS Google Scholar
First citationDondoni, A. & Nuzzi, A. (2006). J. Org. Chem. 71, 7574–7582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIkeda, K., Takahashi, M., Nishida, M., Miyauchi, M., Kizu, H., Kameda, Y., Arisawa, M., Watson, A. A., Nash, R. J., Fleet, G. W. J. & Asano, N. (2000). Carbohydr. Res. 323, 73–80.  CrossRef PubMed CAS Google Scholar
First citationIzumori, K. J. (2002). Naturwissenschaften, 89, 120–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIzumori, K. J. (2006). Biotechnology, 124, 717–722.  CAS Google Scholar
First citationJones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918.  Web of Science CrossRef CAS Google Scholar
First citationKite, G. C., Fellows, L. E., Fleet, G. W. J., Liu, P. S., Scofield, A. M. & Smith, N. G. (1988). Tetrahedron Lett. 29, 6483–6486.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett. 49, 3316–3121.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1755-o1756
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds