metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aquabis(6-carb­oxy-1H-benzimid­azole-5-carboxyl­ato-κN3)nickel(II) di­methyl­formamide disolvate dihydrate

aCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Agriculture, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 20 September 2009; accepted 20 September 2009; online 30 September 2009)

The title compound, [Ni(C9H45N2O4)2(H2O)4]·2C3H7NO·2H2O, has the NiII center coordinated by four water mol­ecules and two N atoms from two 1H-benzimidazole-5,6-dicarboxyl­ate ligands in an octa­hedral geometry. The mol­ecule inter­acts with the solvent water and dimethyl­formamide mol­ecules through N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional supra­molecular network. The metal atom lies on a center of inversion.

Related literature

For the crystal structures of 1H-benzimidazole-5,6-dicarboxyl­ate complexes, see: Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]); Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Song et al. (2009[Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2O

  • Mr = 723.30

  • Triclinic, [P \overline 1]

  • a = 8.5327 (17) Å

  • b = 9.1387 (18) Å

  • c = 11.624 (2) Å

  • α = 100.80 (3)°

  • β = 103.03 (3)°

  • γ = 114.04 (3)°

  • V = 765.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 293 K

  • 0.27 × 0.18 × 0.17 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.830, Tmax = 0.888

  • 6116 measured reflections

  • 2737 independent reflections

  • 2613 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.137

  • S = 1.20

  • 2737 reflections

  • 217 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O1i 0.84 1.86 2.693 (3) 173
O1W—H1W⋯O3ii 0.84 2.00 2.801 (3) 160
O4—H4A⋯O5iii 0.82 1.78 2.585 (3) 167
O2W—H4W⋯O2iv 0.84 1.79 2.624 (3) 176
O2W—H3W⋯O1Wv 0.84 1.92 2.741 (2) 166
O3W—H5W⋯O1Wv 0.84 2.06 2.810 (3) 148
O3W—H6W⋯O1vi 0.84 1.81 2.634 (3) 169
N2—H2⋯O5vii 0.86 1.98 2.779 (3) 155
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z+1; (iii) -x+1, -y+2, -z; (iv) x-1, y-1, z; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y+2, -z+1; (vii) -x, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL9.

Supporting information


Comment top

From the structuralpoint of view, 1H-benzimidazole-5,6-dicarboxylic acid possesses two nitrogen atoms of imidazole ring and four oxygen atoms of carboxylate groups, and might be used as versatile linker in constructing coordination polymers with abundant hydrogen bonds. And several coordination polymers fomed by this ligand have been reported recently:Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-kN3)copper(II) pentahydrate(Gao et al.,2008), Bis(1H-benzimidazole-5,6-dicarboxylato)bis[tetraaquadicobalt(II)] pentahydrate(Lo et al.,2007), Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-kN3) cobalt(II)pentahydrate(Song et al.,2009).In the present paper, we synthesized a novel coordination complex [Ni(C9H4N2O4)2(H2O)4].2H2O.2C3H7NO.

As shown in Figure 1, the NiII atom exhibits an octahedral coordination sphere, defined by two N atoms from two different 1H-benzimidazole-5,6-dicarboxylate ligands, and four water molecules. The equatorial plane is defined by O2w, O3w, O2wi and O3wi atoms, while N1 and N1i occupy the axial position (symmetry codes: i = 1 - x, 1 - y, 1 - z). Inter/intramolecular O—H···O and N—H···O hydrogen bonds between the carboxylate O atoms of 1H-benzimidazole-5,6-dicarboxylate and the coordinated water molecule lead to the structure more stable(Fig 2).The hydrogen bonds are in the normal range(Table 1).

Related literature top

For the crystal structures of 1H-benzimidazole-5,6-dicarboxylate complexes, see: Gao et al. (2008); Lo et al. (2007); Song et al. (2009).

Experimental top

A C3H7NO solution (20 mL)containing Ni(NO3)2(0.1 mmol)and 1H-benzimidazole-5,6-dicarboxylic acid(0.2 mmol) was stirred for a few minutes in air,and left to stand at room temperature for about four weeks, then the green crystals were obtained.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL9 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. A view of the three-dimensional network constructed by O—H···O and N—H···O hydrogen bonding interactions.
Tetraaquabis(6-carboxy-1H-benzimidazole-5-carboxylato- κN3)nickel(II) dimethylformamide disolvate dihydrate top
Crystal data top
[Ni(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2OZ = 1
Mr = 723.30F(000) = 378
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5327 (17) ÅCell parameters from 3600 reflections
b = 9.1387 (18) Åθ = 1.4–28°
c = 11.624 (2) ŵ = 0.72 mm1
α = 100.80 (3)°T = 293 K
β = 103.03 (3)°Block, green
γ = 114.04 (3)°0.27 × 0.18 × 0.17 mm
V = 765.7 (3) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2737 independent reflections
Radiation source: fine-focus sealed tube2613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.2°, θmin = 3.3°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1010
Tmin = 0.830, Tmax = 0.888k = 109
6116 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.1051P)2 + 0.01P]
where P = (Fo2 + 2Fc2)/3
2737 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.61 e Å3
9 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2Oγ = 114.04 (3)°
Mr = 723.30V = 765.7 (3) Å3
Triclinic, P1Z = 1
a = 8.5327 (17) ÅMo Kα radiation
b = 9.1387 (18) ŵ = 0.72 mm1
c = 11.624 (2) ÅT = 293 K
α = 100.80 (3)°0.27 × 0.18 × 0.17 mm
β = 103.03 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2737 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2613 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.888Rint = 0.020
6116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0379 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.20Δρmax = 0.61 e Å3
2737 reflectionsΔρmin = 0.32 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2895 (3)0.4030 (3)0.2261 (2)0.0301 (5)
H10.20300.30620.23390.036*
N10.4387 (2)0.5153 (2)0.31852 (17)0.0272 (4)
Ni10.50000.50000.50000.02200 (19)
C20.4271 (3)0.5938 (3)0.1432 (2)0.0272 (5)
N20.2739 (2)0.4415 (2)0.11945 (17)0.0324 (4)
H20.18610.38320.04990.039*
C30.5296 (3)0.6391 (3)0.2686 (2)0.0252 (4)
O3W0.75996 (16)0.54366 (16)0.50333 (12)0.0345 (4)
C40.6923 (3)0.7892 (3)0.3224 (2)0.0271 (5)
H40.76120.82100.40560.033*
C50.7498 (3)0.8909 (3)0.2494 (2)0.0248 (4)
O10.9319 (2)1.1775 (2)0.37262 (18)0.0456 (5)
C60.6429 (3)0.8423 (3)0.1223 (2)0.0280 (5)
O21.0690 (2)1.0376 (2)0.3063 (2)0.0522 (5)
C70.4811 (3)0.6925 (3)0.0690 (2)0.0307 (5)
H70.41130.65960.01410.037*
C80.6944 (3)0.9451 (3)0.0384 (2)0.0327 (5)
C90.9321 (3)1.0500 (3)0.31293 (19)0.0261 (5)
O2W0.41483 (16)0.24688 (15)0.42925 (12)0.0295 (4)
H6W0.85530.63690.53470.044*
H5W0.75680.48740.43610.044*
H3W0.47550.23300.38450.044*
H4W0.30280.18300.39220.044*
O30.6082 (3)0.8962 (3)0.07127 (17)0.0591 (6)
O40.8343 (3)1.0927 (3)0.09199 (18)0.0633 (7)
H4A0.84811.14460.04150.095*
O1W0.3424 (2)0.7464 (3)0.69171 (17)0.0487 (5)
H1W0.39960.78660.76870.073*
H2W0.26370.77840.67160.073*
O50.0718 (2)0.7407 (2)0.05904 (16)0.0462 (5)
C120.0319 (4)0.5721 (4)0.2255 (3)0.0570 (8)
H12A0.12640.60150.23160.086*
H12B0.01610.51280.28350.086*
H12C0.06530.50130.14260.086*
N30.1376 (3)0.7248 (3)0.25427 (18)0.0352 (5)
C110.2581 (4)0.8066 (4)0.3847 (2)0.0522 (7)
H11A0.36250.90740.39140.078*
H11B0.29710.73080.41290.078*
H11C0.19330.83510.43510.078*
C100.1722 (3)0.7970 (3)0.1704 (2)0.0356 (5)
H100.27940.89780.19490.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0264 (11)0.0250 (11)0.0280 (11)0.0029 (9)0.0068 (9)0.0092 (9)
N10.0272 (9)0.0227 (9)0.0259 (9)0.0057 (7)0.0082 (7)0.0098 (7)
Ni10.0196 (3)0.0191 (3)0.0217 (3)0.00424 (18)0.00625 (17)0.00652 (17)
C20.0216 (10)0.0230 (10)0.0262 (11)0.0024 (8)0.0062 (8)0.0055 (9)
N20.0256 (9)0.0274 (10)0.0254 (9)0.0008 (8)0.0021 (7)0.0071 (8)
C30.0242 (10)0.0248 (10)0.0264 (11)0.0093 (8)0.0112 (8)0.0099 (9)
O3W0.0231 (8)0.0295 (8)0.0380 (9)0.0049 (6)0.0105 (6)0.0003 (7)
C40.0231 (10)0.0266 (11)0.0223 (10)0.0059 (8)0.0037 (8)0.0060 (8)
C50.0223 (10)0.0237 (11)0.0245 (10)0.0075 (8)0.0074 (8)0.0078 (8)
O10.0282 (9)0.0305 (9)0.0559 (11)0.0043 (7)0.0102 (7)0.0071 (8)
C60.0252 (10)0.0278 (11)0.0258 (11)0.0073 (9)0.0082 (8)0.0098 (9)
O20.0233 (9)0.0324 (9)0.0833 (15)0.0073 (7)0.0126 (8)0.0002 (9)
C70.0283 (11)0.0312 (11)0.0217 (10)0.0069 (9)0.0037 (8)0.0072 (9)
C80.0295 (11)0.0328 (12)0.0266 (12)0.0063 (9)0.0078 (9)0.0113 (10)
C90.0220 (10)0.0249 (11)0.0249 (11)0.0059 (9)0.0050 (8)0.0095 (9)
O2W0.0250 (7)0.0233 (7)0.0316 (8)0.0058 (6)0.0076 (6)0.0054 (6)
O30.0561 (12)0.0527 (12)0.0269 (9)0.0082 (9)0.0002 (8)0.0191 (9)
O40.0599 (12)0.0464 (11)0.0327 (10)0.0161 (9)0.0030 (9)0.0224 (9)
O1W0.0396 (10)0.0590 (12)0.0390 (10)0.0258 (9)0.0087 (8)0.0036 (9)
O50.0409 (10)0.0468 (10)0.0272 (9)0.0019 (8)0.0025 (7)0.0156 (8)
C120.0560 (17)0.0591 (18)0.0607 (19)0.0195 (14)0.0312 (15)0.0326 (15)
N30.0421 (11)0.0367 (11)0.0260 (10)0.0184 (9)0.0101 (9)0.0103 (9)
C110.078 (2)0.0531 (17)0.0285 (13)0.0379 (16)0.0077 (13)0.0140 (12)
C100.0363 (12)0.0301 (12)0.0302 (12)0.0083 (10)0.0065 (10)0.0104 (10)
Geometric parameters (Å, º) top
C1—N11.317 (3)C6—C71.386 (3)
C1—N21.344 (3)C6—C81.492 (3)
C1—H10.9300O2—C91.236 (3)
N1—C31.397 (3)C7—H70.9300
N1—Ni12.1014 (18)C8—O31.209 (3)
Ni1—O2W2.0501 (14)C8—O41.293 (3)
Ni1—O2Wi2.0501 (14)O2W—H3W0.8401
Ni1—O3Wi2.0773 (13)O2W—H4W0.8400
Ni1—O3W2.0773 (13)O4—H4A0.8200
Ni1—N1i2.1014 (18)O1W—H1W0.8408
C2—C71.379 (3)O1W—H2W0.8405
C2—N21.390 (3)O5—C101.252 (3)
C2—C31.401 (3)C12—N31.454 (4)
N2—H20.8600C12—H12A0.9600
C3—C41.391 (3)C12—H12B0.9600
O3W—H6W0.8402C12—H12C0.9600
O3W—H5W0.8394N3—C101.298 (3)
C4—C51.391 (3)N3—C111.470 (3)
C4—H40.9300C11—H11A0.9600
C5—C61.424 (3)C11—H11B0.9600
C5—C91.522 (3)C11—H11C0.9600
O1—C91.240 (3)C10—H100.9300
N1—C1—N2113.71 (18)C4—C5—C9115.96 (18)
N1—C1—H1123.1C6—C5—C9123.63 (19)
N2—C1—H1123.1C7—C6—C5120.7 (2)
C1—N1—C3104.99 (18)C7—C6—C8115.74 (19)
C1—N1—Ni1123.63 (15)C5—C6—C8123.59 (19)
C3—N1—Ni1131.30 (15)C2—C7—C6117.85 (19)
O2W—Ni1—O2Wi180.0C2—C7—H7121.1
O2W—Ni1—O3Wi91.85 (6)C6—C7—H7121.1
O2Wi—Ni1—O3Wi88.15 (6)O3—C8—O4122.2 (2)
O2W—Ni1—O3W88.15 (6)O3—C8—C6122.5 (2)
O2Wi—Ni1—O3W91.85 (6)O4—C8—C6115.3 (2)
O3Wi—Ni1—O3W180.0O2—C9—O1125.6 (2)
O2W—Ni1—N1i90.06 (7)O2—C9—C5116.7 (2)
O2Wi—Ni1—N1i89.94 (7)O1—C9—C5117.58 (18)
O3Wi—Ni1—N1i90.14 (7)Ni1—O2W—H3W109.0
O3W—Ni1—N1i89.86 (7)Ni1—O2W—H4W117.7
O2W—Ni1—N189.94 (7)H3W—O2W—H4W110.9
O2Wi—Ni1—N190.06 (7)C8—O4—H4A109.5
O3Wi—Ni1—N189.86 (7)H1W—O1W—H2W111.4
O3W—Ni1—N190.14 (7)N3—C12—H12A109.5
N1i—Ni1—N1180.0N3—C12—H12B109.5
C7—C2—N2131.9 (2)H12A—C12—H12B109.5
C7—C2—C3122.56 (19)N3—C12—H12C109.5
N2—C2—C3105.48 (19)H12A—C12—H12C109.5
C1—N2—C2106.79 (18)H12B—C12—H12C109.5
C1—N2—H2126.6C10—N3—C12121.1 (2)
C2—N2—H2126.6C10—N3—C11120.7 (2)
C4—C3—N1131.2 (2)C12—N3—C11117.8 (2)
C4—C3—C2119.76 (19)N3—C11—H11A109.5
N1—C3—C2109.02 (19)N3—C11—H11B109.5
Ni1—O3W—H6W126.3H11A—C11—H11B109.5
Ni1—O3W—H5W111.1N3—C11—H11C109.5
H6W—O3W—H5W111.6H11A—C11—H11C109.5
C5—C4—C3118.77 (19)H11B—C11—H11C109.5
C5—C4—H4120.6O5—C10—N3124.8 (2)
C3—C4—H4120.6O5—C10—H10117.6
C4—C5—C6120.39 (19)N3—C10—H10117.6
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O1ii0.841.862.693 (3)173
O1W—H1W···O3iii0.842.002.801 (3)160
O4—H4A···O5iv0.821.782.585 (3)167
O2W—H4W···O2v0.841.792.624 (3)176
O2W—H3W···O1Wi0.841.922.741 (2)166
O3W—H5W···O1Wi0.842.062.810 (3)148
O3W—H6W···O1vi0.841.812.634 (3)169
N2—H2···O5vii0.861.982.779 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z+1; (iv) x+1, y+2, z; (v) x1, y1, z; (vi) x+2, y+2, z+1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2O
Mr723.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5327 (17), 9.1387 (18), 11.624 (2)
α, β, γ (°)100.80 (3), 103.03 (3), 114.04 (3)
V3)765.7 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.27 × 0.18 × 0.17
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.830, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
6116, 2737, 2613
Rint0.020
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.137, 1.20
No. of reflections2737
No. of parameters217
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.32

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL9 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O1i0.841.862.693 (3)172.6
O1W—H1W···O3ii0.842.002.801 (3)159.7
O4—H4A···O5iii0.821.782.585 (3)166.8
O2W—H4W···O2iv0.841.792.624 (3)175.8
O2W—H3W···O1Wv0.841.922.741 (2)166.3
O3W—H5W···O1Wv0.842.062.810 (3)147.9
O3W—H6W···O1vi0.841.812.634 (3)168.9
N2—H2···O5vii0.861.982.779 (3)155.0
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z+1; (iii) x+1, y+2, z; (iv) x1, y1, z; (v) x+1, y+1, z+1; (vi) x+2, y+2, z+1; (vii) x, y+1, z.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSong, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds