organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,4-Dihy­dr­oxy­phen­yl)hexan-1-one

aCollege of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 30 May 2010; accepted 12 June 2010; online 23 June 2010)

In the title compound, C12H16O3, a fully extened hexyl carbon chain is attached to a benzene ring; the mean planes formed by the atoms in the benzene ring and the hexa­none are inclined at an angle 8.5 (2)° with respect to each other. In the crystal, inter­molecular O—H⋯O hydrogen bonds join the mol­ecules into an infinite sheet.

Related literature

For the biological activity of alkylcatechols, see: Buu-hoï & Seailles (1955[Buu-hoï, N. P. & Seailles, J. (1955). J. Org. Chem. 20, 606-609.]); Buu-hoï & Xuong (1961[Buu-hoï, N. P. & Xuong, N. D. (1961). J. Org. Chem. 26, 2401-2402.]); Miller et al. (1938[Miller, E., Hartung, W. H., Rock, H. J. & Crossley, F. S. (1938). J. Am. Chem. Soc. 60, 7-10.]); Xiao, Fang et al. (2007[Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951-957.]); Xiao, Xue et al. (2007[Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212-4219.]). For related structures, see: Cheng et al. (2009[Cheng, W., Lv, R. & Zhu, H.-J. (2009). Acta Cryst. E65, o179.]); Wang et al. (2009[Wang, X.-M., Cheng, W. & Han, Y.-W. (2009). Acta Cryst. E65, o176.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16O3

  • Mr = 208.25

  • Triclinic, [P \overline 1]

  • a = 7.170 (2) Å

  • b = 8.070 (3) Å

  • c = 10.634 (4) Å

  • α = 75.638 (17)°

  • β = 73.373 (19)°

  • γ = 88.323 (17)°

  • V = 570.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.983

  • 3311 measured reflections

  • 2321 independent reflections

  • 1219 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.218

  • S = 1.00

  • 2321 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 2.29 2.718 (2) 113
O2—H2⋯O1i 0.82 2.11 2.828 (3) 147
O1—H1A⋯O3ii 0.82 1.93 2.749 (2) 176
Symmetry codes: (i) -x, -y, -z; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Acylcatechols are intermediates in the synthesis of alkycatechols which show significant bactericidal activity (Miller et al., 1938; Xiao, Xue et al., 2007; Xiao, Fang et al., 2007) and possess considerable protective properties against lethal radiations (Buu-hoï & Seailles, 1955; Buu-hoï & Xuong, 1961). Consequently, we have synthesized a series of acylcatechols for bioactivity screening. In this paper, the crystal structure of the title compound has been presented. The crystal structures of compounds related to the title molecule have been reported (Cheng et al., 2009; Wang et al., 2009).

The bond lengths and angles in the title compound (Fig. 1) are unexceptional (Cheng et al., 2009; Wang et al., 2009). The hexyl carbon chain (C7—C12) attached to the phenyl ring is fully extened; the mean-planes formed by the atoms in the phenyl ring and hexanone are inclined at an angle 8.5 (2) ° with respect to each other. The two hydroxyl groups of catechol moiety are involved in an intramolecular hydrogen bond, O2—H2···O1 (Fig. 1). There are two O—H···O type intermolecular hydrogen bonds which stabilize the crystal structure and result in an infinite sheet (Fig. 2 and Tab. 1).

Related literature top

For the biological activity of alkycatechols, see: Buu-hoï & Seailles (1955); Buu-hoï & Xuong (1961); Miller et al. (1938); Xiao, Fang et al. (2007); Xiao, Xue et al. (2007). For related structures, see: Cheng et al. (2009); Wang et al. (2009).

Experimental top

1-(3,4-Dihydroxyphenyl)hexan-1-one was prepared by treating hexanoic acid (1.27 g, 11 mmol) with catechol (1.11 g, 10 mmol) at 348 K for 4 h in boron trifluoride diethyl etherate (20 mL). After cooling, the contents were poured into 150 ml of ice-cold aqueous sodium acetate (10%) with stirring. Then, the mixture was extracted with EtOAc and dried over MgSO4. After removal of solvent, the crude product was crystalized from EtOAc-petroleum (2:3) to give colorless blocks of the title compound suitable for single-crystal structure determination.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.82 Å and C—H = 0.93, 0.96 and 0.97 Å for the aromatic, CH3 and CH2 types H atoms, respectively. Uiso = 1.2Ueq(parent atoms) were assigned for aromatic and CH2 type H-atoms and 1.5Ueq(parent atoms) for OH and CH3 type H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A two-dimensional sheet formed through intermolecular O—H···O hydrogen bonds.
1-(3,4-Dihydroxyphenyl)hexan-1-one top
Crystal data top
C12H16O3Z = 2
Mr = 208.25F(000) = 224
Triclinic, P1Dx = 1.212 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.170 (2) ÅCell parameters from 1104 reflections
b = 8.070 (3) Åθ = 2.8–25.9°
c = 10.634 (4) ŵ = 0.09 mm1
α = 75.638 (17)°T = 296 K
β = 73.373 (19)°Block, colorless
γ = 88.323 (17)°0.30 × 0.24 × 0.20 mm
V = 570.6 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2321 independent reflections
Radiation source: fine-focus sealed tube1219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.975, Tmax = 0.983k = 1010
3311 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1157P)2 + 0.059P]
where P = (Fo2 + 2Fc2)/3
2321 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H16O3γ = 88.323 (17)°
Mr = 208.25V = 570.6 (3) Å3
Triclinic, P1Z = 2
a = 7.170 (2) ÅMo Kα radiation
b = 8.070 (3) ŵ = 0.09 mm1
c = 10.634 (4) ÅT = 296 K
α = 75.638 (17)°0.30 × 0.24 × 0.20 mm
β = 73.373 (19)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2321 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1219 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.016
3311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
2321 reflectionsΔρmin = 0.30 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2119 (4)0.3836 (3)0.1188 (3)0.0558 (7)
H10.14720.48510.10480.067*
C20.1460 (4)0.2413 (3)0.0920 (3)0.0565 (7)
C30.2425 (4)0.0894 (3)0.1127 (3)0.0540 (7)
C40.4023 (4)0.0824 (3)0.1594 (3)0.0627 (8)
H40.46700.01910.17300.075*
C50.4682 (4)0.2247 (3)0.1864 (3)0.0616 (8)
H50.57680.21830.21830.074*
C60.3743 (4)0.3774 (3)0.1665 (3)0.0518 (7)
C70.4394 (4)0.5320 (3)0.1971 (3)0.0562 (7)
C80.6048 (4)0.5200 (3)0.2579 (3)0.0661 (8)
H8A0.72110.49460.19320.079*
H8B0.57620.42440.33760.079*
C90.6490 (5)0.6798 (4)0.2985 (4)0.0746 (9)
H9A0.69140.77300.21760.090*
H9B0.53020.71210.35650.090*
C100.8016 (5)0.6562 (4)0.3708 (4)0.0818 (10)
H10A0.92160.62850.31090.098*
H10B0.76170.55890.44890.098*
C110.8435 (6)0.8093 (5)0.4187 (4)0.1014 (12)
H11A0.72710.83440.48330.122*
H11B0.88050.90870.34220.122*
C121.0097 (8)0.7713 (6)0.4859 (5)0.1353 (17)
H12A0.98510.66050.54860.203*
H12B1.01610.85680.53330.203*
H12C1.13110.77290.41740.203*
O10.1692 (3)0.0474 (2)0.0840 (2)0.0678 (6)
H1A0.22860.13280.10640.102*
O20.0156 (3)0.2520 (2)0.0467 (3)0.0810 (7)
H20.02790.16590.02140.121*
O30.3591 (3)0.6667 (2)0.1739 (2)0.0714 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0566 (15)0.0368 (13)0.0788 (19)0.0104 (11)0.0238 (14)0.0190 (12)
C20.0543 (15)0.0413 (13)0.081 (2)0.0079 (11)0.0261 (14)0.0214 (13)
C30.0582 (16)0.0348 (12)0.0747 (19)0.0041 (11)0.0228 (14)0.0200 (12)
C40.0632 (17)0.0372 (13)0.100 (2)0.0137 (12)0.0371 (16)0.0240 (14)
C50.0594 (16)0.0436 (14)0.094 (2)0.0102 (12)0.0393 (16)0.0209 (14)
C60.0511 (14)0.0376 (13)0.0712 (18)0.0060 (11)0.0207 (13)0.0186 (12)
C70.0621 (17)0.0395 (14)0.0705 (18)0.0052 (12)0.0218 (14)0.0172 (12)
C80.0774 (19)0.0475 (15)0.085 (2)0.0059 (13)0.0375 (17)0.0205 (14)
C90.083 (2)0.0506 (16)0.102 (2)0.0032 (15)0.0437 (19)0.0220 (16)
C100.089 (2)0.073 (2)0.092 (2)0.0020 (18)0.034 (2)0.0281 (18)
C110.117 (3)0.097 (3)0.105 (3)0.017 (2)0.035 (2)0.047 (2)
C120.145 (4)0.132 (4)0.162 (4)0.001 (3)0.073 (4)0.064 (3)
O10.0716 (13)0.0383 (9)0.1094 (16)0.0105 (9)0.0433 (12)0.0283 (10)
O20.0760 (13)0.0531 (11)0.147 (2)0.0214 (10)0.0673 (14)0.0462 (12)
O30.0833 (14)0.0400 (10)0.1058 (16)0.0155 (9)0.0440 (12)0.0271 (10)
Geometric parameters (Å, º) top
C1—C21.376 (3)C8—H8B0.9700
C1—C61.392 (4)C9—C101.491 (4)
C1—H10.9300C9—H9A0.9700
C2—O21.369 (3)C9—H9B0.9700
C2—C31.391 (3)C10—C111.515 (4)
C3—C41.368 (3)C10—H10A0.9700
C3—O11.371 (3)C10—H10B0.9700
C4—C51.377 (4)C11—C121.543 (6)
C4—H40.9300C11—H11A0.9700
C5—C61.385 (3)C11—H11B0.9700
C5—H50.9300C12—H12A0.9600
C6—C71.484 (3)C12—H12B0.9600
C7—O31.220 (3)C12—H12C0.9600
C7—C81.495 (4)O1—H1A0.8200
C8—C91.526 (4)O2—H20.8200
C8—H8A0.9700
C2—C1—C6120.8 (2)C10—C9—C8113.4 (3)
C2—C1—H1119.6C10—C9—H9A108.9
C6—C1—H1119.6C8—C9—H9A108.9
O2—C2—C1119.0 (2)C10—C9—H9B108.9
O2—C2—C3121.2 (2)C8—C9—H9B108.9
C1—C2—C3119.7 (2)H9A—C9—H9B107.7
C4—C3—O1123.5 (2)C9—C10—C11115.1 (3)
C4—C3—C2119.8 (2)C9—C10—H10A108.5
O1—C3—C2116.7 (2)C11—C10—H10A108.5
C3—C4—C5120.5 (2)C9—C10—H10B108.5
C3—C4—H4119.8C11—C10—H10B108.5
C5—C4—H4119.8H10A—C10—H10B107.5
C4—C5—C6120.7 (2)C10—C11—C12110.0 (3)
C4—C5—H5119.7C10—C11—H11A109.7
C6—C5—H5119.7C12—C11—H11A109.7
C5—C6—C1118.5 (2)C10—C11—H11B109.7
C5—C6—C7122.0 (2)C12—C11—H11B109.7
C1—C6—C7119.5 (2)H11A—C11—H11B108.2
O3—C7—C6120.8 (2)C11—C12—H12A109.5
O3—C7—C8120.3 (2)C11—C12—H12B109.5
C6—C7—C8119.0 (2)H12A—C12—H12B109.5
C7—C8—C9115.3 (2)C11—C12—H12C109.5
C7—C8—H8A108.4H12A—C12—H12C109.5
C9—C8—H8A108.4H12B—C12—H12C109.5
C7—C8—H8B108.4C3—O1—H1A109.5
C9—C8—H8B108.4C2—O2—H2109.5
H8A—C8—H8B107.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.292.718 (2)113
O2—H2···O1i0.822.112.828 (3)147
O1—H1A···O3ii0.821.932.749 (2)176
Symmetry codes: (i) x, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H16O3
Mr208.25
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.170 (2), 8.070 (3), 10.634 (4)
α, β, γ (°)75.638 (17), 73.373 (19), 88.323 (17)
V3)570.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
3311, 2321, 1219
Rint0.016
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.218, 1.00
No. of reflections2321
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.292.718 (2)113
O2—H2···O1i0.822.112.828 (3)147
O1—H1A···O3ii0.821.932.749 (2)176
Symmetry codes: (i) x, y, z; (ii) x, y1, z.
 

Acknowledgements

The work was financed by grants (Project 06 J J2067) from the Natural Science Foundation of Hunan Province, China, and by the Scientific Research Fund of Hunan Provincial Education Department (Project 09B083) of China.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuu-hoï, N. P. & Seailles, J. (1955). J. Org. Chem. 20, 606–609.  Google Scholar
First citationBuu-hoï, N. P. & Xuong, N. D. (1961). J. Org. Chem. 26, 2401–2402.  Google Scholar
First citationCheng, W., Lv, R. & Zhu, H.-J. (2009). Acta Cryst. E65, o179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiller, E., Hartung, W. H., Rock, H. J. & Crossley, F. S. (1938). J. Am. Chem. Soc. 60, 7–10.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-M., Cheng, W. & Han, Y.-W. (2009). Acta Cryst. E65, o176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951–957.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212–4219.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds