metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4,4′-[oxalylbis(aza­nedi­yl)]dipyridinium} octa­molybdate

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University 400044, People's Republic of China, and bDepartment of Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Chongqing University 400044, People's Republic of China
*Correspondence e-mail: gongyun7211@yahoo.com.cn

(Received 24 May 2010; accepted 31 May 2010; online 5 June 2010)

In the crystal structure of the title compound, (C12H12N4O2)2[Mo8O26], the amino and pyridinium groups of the N1,N2-di(pyridinium-4-yl)oxalamide cations are hydrogen bonded to the O atoms of the centrosymmetric isopolyoxometalate β-[Mo8O26]4− anions, forming a three-dimensional supra­molecular architecture.

Related literature

For polyoxometalates (POMs), see: Cronin et al. (2002[Cronin, L., Beugholt, C., Krickemeyer, E., Schmidtmann, M., Bogge, H., Kogerler, P., Luong, T. K. K. & Müller, A. (2002). Angew. Chem. Int. Ed. 41, 2805-2808.]); Fukaya & Yamase (2003[Fukaya, K. & Yamase, T. (2003). Angew. Chem. Int. Ed. 42, 6544-658.]); Katsoulis (1988[Katsoulis, D. E. (1988). Chem. Rev. 90, 359-387.]); Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-48.]). For the applications of POMs in biology and materials sciences, see: Cui et al. (2003[Cui, X. B., Xu, J. Q., Li, Y., Sun, Y. H., Ye, L. & Yang, G. Y. (2003). J. Mol. Struct. 657, 397-403.]); Luan et al. (2002[Luan, G. Y., Wang, E. B., Han, Z. B., Li, Y. G., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). J. Mol. Struct. 606, 211-215.]); Wang et al. (2003[Wang, D. R., Zhang, W. J., Gruning, K. & Rehder, D. (2003). J. Mol. Struct. 656, 79-91.]). For the structure of N1,N2-di(pyridin-4-yl)oxalamide, see: Tzeng et al. (2007[Tzeng, B. C., Chen, Y. F., Wu, C. C., Hu, C. C., Chang, Y. T. & Chen, C. K. (2007). New J. Chem. 31, 202-209.]). For details of the geometrical parameters in the same isopolyoxometalate anion, see: Gong et al. (2007[Gong, Y., Hu, C. W. & Xia, Z. N. (2007). J. Mol. Struct. 837, 48-57.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H12N4O2)2[Mo8O26]

  • Mr = 1672.03

  • Monoclinic, P 21 /c

  • a = 10.633 (2) Å

  • b = 11.552 (2) Å

  • c = 17.240 (4) Å

  • β = 101.553 (3)°

  • V = 2074.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.05 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.829, Tmax = 1.000

  • 14669 measured reflections

  • 4534 independent reflections

  • 4215 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.098

  • S = 1.40

  • 4534 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −2.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O7i 0.86 2.61 3.368 (4) 148
N1—H1⋯O8ii 0.86 1.89 2.699 (4) 158
N3—H3⋯O5iii 0.86 1.94 2.779 (4) 165
N4—H4A⋯O1 0.86 2.25 2.669 (4) 110
N4—H4A⋯O4iv 0.86 2.26 3.059 (4) 154
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{3\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y-1, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polyoxometalates (POMs) are early transition metal oxygen anion clusters. They are an outstanding class of anionic compounds due to their wealthy topology, superior physical and chemical properties (Pope & Muller, 1991; Katsoulis, 1988). The nanoscopic sizes (Cronin, et al., 2002; Fukaya & Yamase, 2003,) and thier diversified shapes of discrete POMs have attracted great interest. The design, synthesis and structural characterization of inorganic-organic hybrid compounds base on POMs, for which many properties and applications can be predicted, have established a new field of research in the chemistry of biology and materials sciences (Luan, et al., 2002; Cui, et al., 2003; Wang, et al., 2003). Different N-heterocycle ligands can lead to different inorganic-organic hybrid compounds based on POMs. N1,N2-di(pyridin-4-yl)oxalamide (L), is a bis-pyridine ligand, which has been reported only rarely in the construction of hybrid compounds based on POMs. In the present work, the title complex was synthesized hydrothermally by reacting L with the isopolyoxometalate, Mo8O26.

The molecular structure of the title complex is illustrated in Fig. 1. In the asymmetric unit there is a doublely protonated L molecule, and half an isopolyoxometalate unit. The bond distances and angles in the cation are similar to those observed previously for N1,N2-di(pyridin-4-yl)oxalamide (Tzeng, et al., 2007). For the anion, [Mo8O26]4-, the geometrical parameters are similar to those reported by (Gong, et al., 2007).

In the crystal the protonated pyrdidinium groups and the amino group form N-H···O hydrogen bonds with the oxygen atoms of the centrosymmetric [Mo8O26]4- anions, leading to the formation of a three dimensional supramolecular network (Table 1 and Fig. 2).

Related literature top

For polyoxometalates (POMs), see: Cronin et al. (2002); Fukaya & Yamase (2003); Katsoulis (1988); Pope & Muller (1991). For the applications of POMs in the chemistry of biology and materials sciences, see: Cui et al. (2003); Luan et al. (2002); Wang et al. (2003). For the structure of N1,N2-di(pyridin-4-yl)oxalamide, see: Tzeng et al. (2007). For details of the geometrical parameters in the same isopolyoxometalate anion, see: Gong et al. (2007).

Experimental top

A mixture of L (0.05 mmol, 0.012 g), Na2MoO4(0.05 mmol, 0.012 g) and water(10 ml) was adjusted to pH = 3.0 by HCl. The synthesis was carried out hydrothermally using a Teflon-lined autoclave. The reaction mixture was heated at 393 K for 3 days, followed by slow cooling to rt. The resulting colorless prismatic crystals were filtered off and washed with water (yield: ca. 90% based on Mo). Elemental analyse - found: C, 17.45; H, 1.58; N, 6.56; Mo, 46.11; calcd: C, 17.22; H, 1.44; N, 6.70; Mo, 45.93.

Refinement top

The H-atoms were positioned geometrically and refined as riding atoms: C—H = 0.93Å, N—H = 0.86Å and Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with the atomic numbering scheme and displacement ellipsoids at the 30% probability level [Symmetry codes: (i) -x,-y+1,-z].
[Figure 2] Fig. 2. A view along the b-axis of the crystal packing of the title complex, illustrating the three dimensional supramolecular architecture constructed by the intermolecular N-H···O hydrogen bonds (dotted lines); see Table 1 for details.
Bis{4,4'-[oxalylbis(azanediyl)]dipyridinium} octamolybdate top
Crystal data top
(C12H12N4O2)2[Mo8O26]F(000) = 1592
Mr = 1672.03Dx = 2.670 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5569 reflections
a = 10.633 (2) Åθ = 2.1–27.5°
b = 11.552 (2) ŵ = 2.45 mm1
c = 17.240 (4) ÅT = 293 K
β = 101.553 (3)°Prism, colorless
V = 2074.7 (8) Å30.23 × 0.22 × 0.05 mm
Z = 2
Data collection top
Siemens CCD area-detector
diffractometer
4534 independent reflections
Radiation source: fine-focus sealed tube4215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.829, Tmax = 1.000k = 1314
14669 measured reflectionsl = 2217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.40 w = 1/[σ2(Fo2) + (0.054P)2 + 0.4946P]
where P = (Fo2 + 2Fc2)/3
4534 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 2.27 e Å3
Crystal data top
(C12H12N4O2)2[Mo8O26]V = 2074.7 (8) Å3
Mr = 1672.03Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.633 (2) ŵ = 2.45 mm1
b = 11.552 (2) ÅT = 293 K
c = 17.240 (4) Å0.23 × 0.22 × 0.05 mm
β = 101.553 (3)°
Data collection top
Siemens CCD area-detector
diffractometer
4534 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4215 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 1.000Rint = 0.021
14669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.40Δρmax = 1.40 e Å3
4534 reflectionsΔρmin = 2.27 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.08119 (2)0.53770 (2)0.098624 (15)0.01481 (10)
Mo20.03951 (3)0.71904 (2)0.069243 (16)0.01713 (10)
Mo30.25513 (2)0.49409 (2)0.029720 (16)0.01602 (10)
Mo40.13294 (3)0.77083 (2)0.064661 (17)0.01917 (10)
O120.0104 (2)0.8099 (2)0.01704 (14)0.0218 (5)
O60.2011 (2)0.4893 (2)0.17096 (15)0.0252 (5)
O150.1779 (2)0.61483 (18)0.02814 (13)0.0168 (4)
O50.0636 (2)0.44017 (19)0.11312 (13)0.0165 (4)
O40.2513 (2)0.8238 (2)0.00841 (16)0.0297 (6)
O70.3709 (2)0.4459 (2)0.04628 (15)0.0275 (5)
N20.5229 (3)0.1925 (2)1.09498 (17)0.0221 (6)
H2A0.51020.25871.07200.026*
O130.0261 (2)0.6628 (2)0.13799 (13)0.0205 (5)
C20.3935 (3)0.2606 (3)1.1832 (2)0.0259 (7)
H20.36750.32241.14910.031*
O110.3343 (2)0.5745 (2)0.08718 (14)0.0242 (5)
O90.0852 (3)0.7563 (2)0.14308 (15)0.0274 (5)
O100.1691 (3)0.7832 (2)0.09476 (16)0.0273 (5)
C50.4718 (4)0.0833 (3)1.2863 (2)0.0301 (8)
H50.49850.02451.32270.036*
C40.5210 (4)0.0892 (3)1.2190 (2)0.0265 (7)
H40.58010.03461.20910.032*
N10.3858 (3)0.1609 (3)1.30054 (17)0.0280 (7)
H10.35450.15411.34260.034*
O30.1253 (3)0.8654 (2)0.14042 (16)0.0321 (6)
C30.4805 (3)0.1793 (3)1.16520 (18)0.0196 (6)
C10.3471 (4)0.2490 (3)1.2508 (2)0.0286 (8)
H1A0.28820.30251.26260.034*
O140.0844 (2)0.40727 (19)0.01120 (12)0.0173 (4)
O80.2273 (2)0.3590 (2)0.09586 (13)0.0205 (5)
N30.8440 (3)0.0969 (3)0.75088 (17)0.0285 (7)
H30.87610.09880.70890.034*
O20.5624 (3)0.2419 (2)0.94778 (15)0.0289 (6)
O10.6119 (3)0.0145 (2)1.08260 (16)0.0334 (6)
N40.6865 (3)0.0776 (3)0.94989 (17)0.0236 (6)
H4A0.70650.01540.97700.028*
C110.7132 (3)0.1824 (3)0.8303 (2)0.0261 (7)
H110.66060.24280.83990.031*
C100.7680 (4)0.1841 (3)0.7648 (2)0.0298 (8)
H100.75250.24610.72970.036*
C80.8193 (4)0.0012 (3)0.8668 (2)0.0303 (8)
H80.83840.06090.90150.036*
C90.8712 (4)0.0072 (3)0.8005 (2)0.0333 (9)
H90.92560.05120.78980.040*
C120.7373 (3)0.0892 (3)0.88212 (18)0.0204 (6)
C60.5830 (3)0.1107 (3)1.05882 (19)0.0206 (6)
C70.6084 (3)0.1539 (3)0.97837 (19)0.0226 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01333 (15)0.02061 (16)0.01084 (15)0.00116 (9)0.00325 (10)0.00091 (10)
Mo20.01807 (16)0.01867 (16)0.01602 (16)0.00122 (10)0.00673 (11)0.00088 (10)
Mo30.01266 (15)0.02166 (17)0.01468 (16)0.00069 (9)0.00496 (11)0.00006 (10)
Mo40.01891 (17)0.02088 (16)0.01936 (16)0.00103 (10)0.00773 (12)0.00038 (10)
O120.0232 (12)0.0214 (11)0.0228 (11)0.0027 (9)0.0093 (10)0.0038 (9)
O60.0216 (12)0.0342 (13)0.0184 (12)0.0020 (10)0.0003 (10)0.0029 (10)
O150.0156 (10)0.0194 (10)0.0160 (10)0.0018 (8)0.0047 (8)0.0007 (9)
O50.0162 (10)0.0199 (10)0.0146 (10)0.0006 (8)0.0057 (8)0.0005 (9)
O40.0250 (13)0.0339 (14)0.0311 (14)0.0052 (11)0.0073 (11)0.0089 (11)
O70.0216 (12)0.0381 (14)0.0221 (12)0.0048 (11)0.0026 (10)0.0052 (11)
N20.0260 (15)0.0251 (14)0.0176 (13)0.0021 (12)0.0105 (11)0.0042 (11)
O130.0204 (11)0.0226 (11)0.0192 (11)0.0004 (9)0.0059 (9)0.0040 (9)
C20.0268 (18)0.0300 (17)0.0226 (17)0.0055 (14)0.0089 (14)0.0044 (14)
O110.0217 (12)0.0292 (12)0.0237 (12)0.0022 (10)0.0091 (10)0.0032 (10)
O90.0291 (13)0.0281 (12)0.0232 (12)0.0072 (11)0.0010 (11)0.0008 (11)
O100.0272 (13)0.0269 (13)0.0305 (13)0.0026 (10)0.0127 (11)0.0019 (10)
C50.038 (2)0.0303 (18)0.0222 (17)0.0010 (16)0.0069 (15)0.0068 (15)
C40.0269 (18)0.0316 (18)0.0222 (17)0.0038 (14)0.0074 (14)0.0026 (15)
N10.0295 (16)0.0401 (17)0.0171 (13)0.0029 (13)0.0114 (12)0.0004 (13)
O30.0354 (14)0.0310 (13)0.0332 (14)0.0015 (11)0.0146 (12)0.0097 (12)
C30.0180 (15)0.0268 (16)0.0148 (14)0.0016 (12)0.0053 (12)0.0005 (13)
C10.0263 (18)0.0380 (19)0.0235 (17)0.0048 (15)0.0097 (15)0.0007 (16)
O140.0169 (10)0.0209 (10)0.0153 (10)0.0003 (8)0.0063 (8)0.0001 (9)
O80.0223 (11)0.0228 (11)0.0193 (11)0.0002 (9)0.0110 (9)0.0029 (9)
N30.0311 (16)0.0405 (17)0.0173 (13)0.0040 (14)0.0130 (12)0.0015 (13)
O20.0333 (14)0.0309 (13)0.0244 (13)0.0054 (11)0.0104 (11)0.0031 (11)
O10.0461 (17)0.0300 (14)0.0293 (14)0.0072 (12)0.0204 (13)0.0039 (11)
N40.0278 (15)0.0276 (14)0.0188 (13)0.0042 (12)0.0127 (12)0.0029 (12)
C110.0261 (17)0.0322 (18)0.0218 (16)0.0051 (14)0.0090 (14)0.0019 (14)
C100.0299 (19)0.040 (2)0.0209 (17)0.0027 (16)0.0074 (15)0.0061 (15)
C80.040 (2)0.0269 (18)0.0284 (19)0.0052 (15)0.0175 (17)0.0041 (15)
C90.042 (2)0.0317 (19)0.032 (2)0.0007 (16)0.0210 (18)0.0033 (16)
C120.0232 (16)0.0244 (16)0.0155 (14)0.0036 (13)0.0081 (12)0.0026 (12)
C60.0195 (15)0.0278 (16)0.0171 (14)0.0042 (13)0.0094 (12)0.0017 (13)
C70.0235 (16)0.0286 (16)0.0172 (15)0.0049 (14)0.0076 (13)0.0018 (14)
Geometric parameters (Å, º) top
Mo1—O61.690 (2)C2—C31.395 (5)
Mo1—O131.747 (2)C2—H20.9300
Mo1—O151.956 (2)C5—N11.338 (5)
Mo1—O51.964 (2)C5—C41.366 (5)
Mo1—O142.136 (2)C5—H50.9300
Mo1—O14i2.399 (2)C4—C31.403 (5)
Mo1—Mo33.1951 (6)C4—H40.9300
Mo2—O101.699 (3)N1—C11.342 (5)
Mo2—O91.699 (3)N1—H10.8600
Mo2—O121.896 (2)C1—H1A0.9300
Mo2—O5i2.024 (2)O14—Mo2i2.322 (2)
Mo2—O14i2.322 (2)O14—Mo1i2.399 (2)
Mo2—O152.333 (2)O8—Mo4i1.939 (2)
Mo3—O111.699 (2)N3—C91.338 (5)
Mo3—O71.702 (2)N3—C101.342 (5)
Mo3—O81.921 (2)N3—H30.8600
Mo3—O151.986 (2)O2—C71.203 (4)
Mo3—O142.305 (2)O1—C61.203 (4)
Mo3—O5i2.370 (2)N4—C71.368 (4)
Mo4—O31.692 (3)N4—C121.388 (4)
Mo4—O41.706 (3)N4—H4A0.8600
Mo4—O121.924 (2)C11—C101.371 (5)
Mo4—O8i1.939 (2)C11—C121.390 (5)
Mo4—O132.271 (2)C11—H110.9300
O5—Mo2i2.024 (2)C10—H100.9300
O5—Mo3i2.370 (2)C8—C91.368 (5)
N2—C61.360 (4)C8—C121.398 (5)
N2—C31.383 (4)C8—H80.9300
N2—H2A0.8600C9—H90.9300
C2—C11.361 (5)C6—C71.548 (5)
O6—Mo1—O13104.42 (12)O12—Mo4—O1378.54 (10)
O6—Mo1—O15101.34 (11)O8i—Mo4—O1377.86 (9)
O13—Mo1—O1597.08 (10)Mo2—O12—Mo4118.21 (12)
O6—Mo1—O5102.18 (11)Mo1—O15—Mo3108.29 (10)
O13—Mo1—O595.32 (10)Mo1—O15—Mo2110.37 (10)
O15—Mo1—O5149.67 (9)Mo3—O15—Mo2105.41 (9)
O6—Mo1—O1499.85 (11)Mo1—O5—Mo2i108.21 (10)
O13—Mo1—O14155.72 (10)Mo1—O5—Mo3i109.83 (10)
O15—Mo1—O1478.37 (9)Mo2i—O5—Mo3i102.84 (9)
O5—Mo1—O1478.98 (9)C6—N2—C3126.2 (3)
O6—Mo1—O14i174.94 (10)C6—N2—H2A116.9
O13—Mo1—O14i80.62 (9)C3—N2—H2A116.9
O15—Mo1—O14i77.46 (8)Mo1—O13—Mo4120.57 (11)
O5—Mo1—O14i77.42 (8)C1—C2—C3119.6 (3)
O14—Mo1—O14i75.11 (9)C1—C2—H2120.2
O6—Mo1—Mo390.19 (9)C3—C2—H2120.2
O13—Mo1—Mo3133.25 (8)N1—C5—C4121.0 (3)
O15—Mo1—Mo336.17 (6)N1—C5—H5119.5
O5—Mo1—Mo3125.10 (6)C4—C5—H5119.5
O14—Mo1—Mo346.13 (6)C5—C4—C3118.6 (3)
O14i—Mo1—Mo386.01 (5)C5—C4—H4120.7
O10—Mo2—O9104.31 (13)C3—C4—H4120.7
O10—Mo2—O12103.29 (11)C5—N1—C1121.6 (3)
O9—Mo2—O12102.84 (11)C5—N1—H1119.2
O10—Mo2—O5i97.46 (11)C1—N1—H1119.2
O9—Mo2—O5i95.06 (11)N2—C3—C2117.9 (3)
O12—Mo2—O5i148.09 (10)N2—C3—C4123.3 (3)
O10—Mo2—O14i160.99 (11)C2—C3—C4118.8 (3)
O9—Mo2—O14i93.28 (11)N1—C1—C2120.3 (3)
O12—Mo2—O14i79.28 (9)N1—C1—H1A119.8
O5i—Mo2—O14i73.47 (8)C2—C1—H1A119.8
O10—Mo2—O1589.10 (11)Mo1—O14—Mo391.94 (8)
O9—Mo2—O15162.69 (11)Mo1—O14—Mo2i92.79 (8)
O12—Mo2—O1584.24 (9)Mo3—O14—Mo2i162.71 (11)
O5i—Mo2—O1572.02 (8)Mo1—O14—Mo1i104.89 (9)
O14i—Mo2—O1572.31 (8)Mo3—O14—Mo1i98.15 (8)
O11—Mo3—O7105.16 (12)Mo2i—O14—Mo1i96.69 (8)
O11—Mo3—O897.69 (11)Mo3—O8—Mo4i119.38 (11)
O7—Mo3—O8101.11 (12)C9—N3—C10121.9 (3)
O11—Mo3—O15102.23 (11)C9—N3—H3119.1
O7—Mo3—O1598.71 (11)C10—N3—H3119.1
O8—Mo3—O15147.03 (9)C7—N4—C12127.3 (3)
O11—Mo3—O14158.28 (10)C7—N4—H4A116.3
O7—Mo3—O1496.57 (11)C12—N4—H4A116.3
O8—Mo3—O1477.93 (9)C10—C11—C12119.1 (3)
O15—Mo3—O1473.83 (8)C10—C11—H11120.4
O11—Mo3—O5i86.39 (10)C12—C11—H11120.4
O7—Mo3—O5i166.64 (10)N3—C10—C11120.4 (3)
O8—Mo3—O5i83.62 (9)N3—C10—H10119.8
O15—Mo3—O5i71.82 (8)C11—C10—H10119.8
O14—Mo3—O5i72.03 (8)C9—C8—C12119.5 (3)
O11—Mo3—Mo1137.78 (9)C9—C8—H8120.3
O7—Mo3—Mo187.02 (9)C12—C8—H8120.3
O8—Mo3—Mo1119.84 (7)N3—C9—C8120.1 (4)
O15—Mo3—Mo135.55 (6)N3—C9—H9119.9
O14—Mo3—Mo141.93 (5)C8—C9—H9119.9
O5i—Mo3—Mo179.83 (5)N4—C12—C11124.3 (3)
O3—Mo4—O4104.63 (14)N4—C12—C8116.8 (3)
O3—Mo4—O12104.98 (12)C11—C12—C8118.9 (3)
O4—Mo4—O1297.54 (12)O1—C6—N2126.7 (3)
O3—Mo4—O8i103.44 (11)O1—C6—C7121.6 (3)
O4—Mo4—O8i97.81 (12)N2—C6—C7111.6 (3)
O12—Mo4—O8i142.92 (9)O2—C7—N4127.6 (3)
O3—Mo4—O1390.56 (11)O2—C7—C6122.5 (3)
O4—Mo4—O13164.80 (11)N4—C7—C6110.0 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7ii0.862.613.368 (4)148
N1—H1···O8iii0.861.892.699 (4)158
N3—H3···O5iv0.861.942.779 (4)165
N4—H4A···O10.862.252.669 (4)110
N4—H4A···O4v0.862.263.059 (4)154
Symmetry codes: (ii) x, y, z+1; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formula(C12H12N4O2)2[Mo8O26]
Mr1672.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.633 (2), 11.552 (2), 17.240 (4)
β (°) 101.553 (3)
V3)2074.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.23 × 0.22 × 0.05
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.829, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14669, 4534, 4215
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.098, 1.40
No. of reflections4534
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.40, 2.27

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.862.6083.368 (4)148
N1—H1···O8ii0.861.8852.699 (4)158
N3—H3···O5iii0.861.9402.779 (4)165
N4—H4A···O10.862.2482.669 (4)110
N4—H4A···O4iv0.862.2633.059 (4)154
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+3/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1, z+1.
 

Acknowledgements

This work was supported by the Chongqing University Postgraduate Science Fund (No. 200911A1B0010317) and the Fundamental Research Funds for the Central Universities (No. CDJZR10 22 00 09)

References

First citationCronin, L., Beugholt, C., Krickemeyer, E., Schmidtmann, M., Bogge, H., Kogerler, P., Luong, T. K. K. & Müller, A. (2002). Angew. Chem. Int. Ed. 41, 2805–2808.  CrossRef CAS
First citationCui, X. B., Xu, J. Q., Li, Y., Sun, Y. H., Ye, L. & Yang, G. Y. (2003). J. Mol. Struct. 657, 397–403.  CSD CrossRef CAS
First citationFukaya, K. & Yamase, T. (2003). Angew. Chem. Int. Ed. 42, 6544–658.  Web of Science CrossRef
First citationGong, Y., Hu, C. W. & Xia, Z. N. (2007). J. Mol. Struct. 837, 48–57.  Web of Science CSD CrossRef CAS
First citationKatsoulis, D. E. (1988). Chem. Rev. 90, 359–387.
First citationLuan, G. Y., Wang, E. B., Han, Z. B., Li, Y. G., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). J. Mol. Struct. 606, 211–215.  Web of Science CSD CrossRef CAS
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–48.  CrossRef Web of Science
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
First citationTzeng, B. C., Chen, Y. F., Wu, C. C., Hu, C. C., Chang, Y. T. & Chen, C. K. (2007). New J. Chem. 31, 202–209.  Web of Science CSD CrossRef CAS
First citationWang, D. R., Zhang, W. J., Gruning, K. & Rehder, D. (2003). J. Mol. Struct. 656, 79–91.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds