metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m731-m732

trans-Di­chlorido(2,2-di­methyl­propane-1,3-di­amine)­bis­­(tri­phenyl­phosphane)ruthenium(II)

aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, and bDepartment of Chemistry, King Saud University, PO Box 2455, Riyadh-11451, Saudi Arabia
*Correspondence e-mail: m.khanfar@ju.edu.jo

(Received 15 May 2010; accepted 22 May 2010; online 5 June 2010)

In the title compound, [RuCl2(C5H14N2)(C18H15P)2], the RuII atom is six-coordinated, forming a slightly distorted octa­hedral geometry, with two chloride ions in an axial arrangement, and two P atoms of two triphenyl­phosphane and two chelating N atoms of the bidentate 2,2-dimethyl­propane-1,3-diamine ligand located in the equatorial plane. The average Ru—P, Ru—N and Ru—Cl bond lengths are 2.325 (18), 2.1845 (7) and 2.4123 (12) Å, respectively.

Related literature

For the reduction of ketones to secondary alcohols, see: Noyori (1994[Noyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: J. Wiley & Sons.]). For enanti­oselective hydrogenation of prochiral carbonyl compounds to chiral alcohols, see: Drozdzak et al. (2005[Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055-3074.]). For background to stereo-, regio- and enantio-selective ruthenium catalysis, see: Clarke (2002[Clarke, M. (2002). Coord. Chem. Rev. 232, 69-93.]); Noyori (2003[Noyori, R. (2003). Adv. Synth. Catal. 345, 15-32.]) and references therein. For RuII catalysts, see: Noyori & Ohkuma (2001[Noyori, R. & Ohkuma, T. (2001). Angew. Chem. Int. Ed. 40, 40-73.]); Ohkuma et al. (2002[Ohkuma, T., Koizumi, M., Muniz, K., Hilt, G., Kabuta, C. & Noyori, R. (2002). J. Am. Chem. Soc. 124, 6508-6509.]); Lindner et al. (2005[Lindner, E., Lu, Z.-L., Mayer, A. H., Speiser, B., Tittel, C. & Warad, I. (2005). Electrochem. Commun. 7, 1013-1020.]). For related structures, see: Nachtigall et al. (2002[Nachtigall, C., Al-Gharabli, S., Eichele, K., Lindner, E. & Mayer, H. A. (2002). Organometallics, 21, 105-112.]); Lindner et al. (2003a[Lindner, E., Mayer, H. A., Warad, I. & Eichele, K. (2003a). J. Organomet. Chem. 665, 176-185.],b[Lindner, E., Warad, I., Eichele, K. & Mayer, H. A. (2003b). Inorg. Chim. Acta, 350, 49-56.]); Doucet et al. (1998[Doucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A., Ikariya, T. & Noyori, R. (1998). Angew. Chem. Int. Ed. 37, 1703-1707.]); Warad et al. (2006[Warad, I., Al-Resayes, S. & Eichele, K. (2006). Z. Kristallogr. 221, 275-276.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C5H14N2)(C18H15P)2]

  • Mr = 798.69

  • Monoclinic, P 21 /c

  • a = 17.393 (2) Å

  • b = 10.3493 (16) Å

  • c = 21.315 (2) Å

  • β = 102.181 (15)°

  • V = 3750.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.60 × 0.60 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.687, Tmax = 0.967

  • 7922 measured reflections

  • 7319 independent reflections

  • 5387 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 400 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.078

  • S = 1.03

  • 7319 reflections

  • 436 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

One of the important transformations in the organic synthesis is the reduction of ketones to secondary alcohol (Noyori, 1994). The enantioselective hydrogenation of prochiral carbonyl compounds to chiral alcohols is among the most valuable method in organic chemistry (Drozdzak et al., 2005; Lindner et al., 2005). Furthermore, stereo-, regio- and enantioselective ruthenium-catalysis lies at the heart of current developments in pharmaceutical, agrochemical and similar industries (Noyori, 2003; Clarke, 2002). Recently Noyori et al. (Ohkuma et al., 2002; Noyori & Ohkuma, 2001) discovered a ruthenium(II) complex system containing diphosphine and 1,2-diamine ligands which, in the presence of a base and 2-propanol, proved to be excellent catalysts (regarding efficiency, enantioselectivity, and flexibility) for the hydrogenation of ketones under mild conditions (Lindner et al., 2005; Noyori & Ohkuma, 2001). The title complex is crystallized as free solvated trans-dichloro-cis-bis(triphenylphosphane) isomer with approximate C2v symmetry. The ruthenium atom is coordinated with two chlorine species in trans form, one diamine co-ligand via the nitrogen atoms and two triphenylphosphane ligands via the phosphorus atoms in cis forms. The complex exhibits distorted octahedron geometry around the ruthenium center atom with two Ru–N distances of 2.183 (3)Å and 2.185 (3) Å, two Ru–Cl distances of 2.4114 (8)Å and 2.4130 (8)Å and two Ru–P distances equal 2.3120 (8)Å and 2.3370 (8) Å. The diamine and phosphine ligands are practically planar. The coordination angle of the diamine chelate ring results in distinctly N–Ru–N angle of 82.35 (11)° departs from ideal value by up to approximately 7.6°, due to the six-membered ring chelating nature of 1,3-propanediamine ligand, while the P–Ru–P angle is equal 98.55 (3)°. The dichloro ligands are bent away from their axial positions toward the diamine ligand forming Cl–Ru–Cl angle of 166.32 (3)°, resonating to the steric effect of the phenyls in the phosphine ligands. In the crystal structure there are a number of RuCl···HN contacts smaller than 3.0 Å, indicating the presence of unconventional intra-hydrogen bonds (Doucet et al., 1998; Warad et al., 2006).

Related literature top

For the reduction of ketones to secondary alcohols, see: Noyori (1994). For enantioselective hydrogenation of prochiral carbonyl compounds to chiral alcohols, see: Drozdzak et al. (2005). For background to stereo-, regio- and enantio-selective ruthenium catalysis, see: Clarke (2002); Noyori (2003) and references therein. For RuII catalysts, see: Noyori & Ohkuma (2001); Ohkuma et al. (2002); Lindner et al. (2005). For related structures, see: Nachtigall et al. (2002); Lindner et al. (2003a,b); Doucet et al. (1998); Warad et al. (2006).

Experimental top

All the reactions were performed using Schlenk-type flask under argon and standard high vacuum-line techniques. Solvents were of analytical grade and distilled under argon. The title compound was prepared starting from trans-RuCl2(PPh3)3 in a similar procedure described previously (Lindner et al., 2003b). Mixing of 2,2-dimethylpropane-1,3-diamine (0.059 ml, 0.49 mmol) in dichloromethane (10 ml) dropwise with trans-RuCl2(PPh3)3 (0.454 mmol) dissolved in the same solvent (15 ml). The reaction mixture was stirred at room temperature for 2 h. The solvent was removed in vacuo. Then the residue was washed well with hexane then diethylether and dried, to yield 310 mg (90%) of yellow powder. The recrystallization was performed by slow diffusion of diethylether into a solution of the complex in dichloromethane to yield orange-brown-plated crystals. 1H NMR (CD2Cl2): δ (p.p.m.) 0.79 (s, 6H, C(CH3)2), 2.57 (m, 4H, NCH2), 3.12 (br, s, 4H, NH2), 7.2–7.7 (m, 20H, C6H5). 31P{1H} NMR (CD2Cl2):δ (p.p.m.) 46.02 (s). 13C{1H} NMR (CD2Cl2): δ (p.p.m.) 25.3 (s, C(CH3)2), 34.2 (s, C(CH3)2), 49.2 (s, CH2N), 127.7 (t, N = 4.04 Hz, m-C6H5), 129.3 (s, p-C6H5), 135.4 (t, N=7.42 Hz,o-C6H5), 135.8 (d, N = 18.8 Hz, 1-C6H5). FAB MS: (m/z) 798.1 (M+). Anal. Calc. for C41H44Cl2N2P2Ru: C, 66.65.12; H, 5.55; Cl, 8.88; N, 3.51. Found: C, 66.94; H, 5.52; Cl, 9.20; N, 3.59%.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. All Hydrogen atoms were refined isotropically.All H atoms were fixed and subsequently refined using a riding model with Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The structure of the compound, showing 30% probability displacement ellipsoids and the atom numbering scheme.
trans-Dichlorido(2,2-dimethylpropane-1,3- diamine)bis(triphenylphosphane)ruthenium(II) top
Crystal data top
[RuCl2(C5H14N2)(C18H15P)2]F(000) = 1648
Mr = 798.69Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.70930 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 17.393 (2) Åθ = 7.8–12.3°
b = 10.3493 (16) ŵ = 0.68 mm1
c = 21.315 (2) ÅT = 293 K
β = 102.181 (15)°Plate, brown
V = 3750.4 (9) Å30.60 × 0.60 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
5387 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.9°, θmin = 3.1°
ω scansh = 2121
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.687, Tmax = 0.967l = 126
7922 measured reflections3 standard reflections every 400 reflections
7319 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078Only H-atom coordinates refined
S = 1.03 w = 1/[σ2(Fo2) + (0.027P)2 + 1.9538P]
where P = (Fo2 + 2Fc2)/3
7319 reflections(Δ/σ)max = 0.001
436 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[RuCl2(C5H14N2)(C18H15P)2]V = 3750.4 (9) Å3
Mr = 798.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.393 (2) ŵ = 0.68 mm1
b = 10.3493 (16) ÅT = 293 K
c = 21.315 (2) Å0.60 × 0.60 × 0.05 mm
β = 102.181 (15)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5387 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.687, Tmax = 0.9673 standard reflections every 400 reflections
7922 measured reflections intensity decay: 2%
7319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.078Only H-atom coordinates refined
S = 1.03Δρmax = 0.39 e Å3
7319 reflectionsΔρmin = 0.51 e Å3
436 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.293247 (13)0.49329 (2)0.344643 (10)0.02586 (7)
Cl10.39278 (5)0.65793 (8)0.37293 (4)0.0421 (2)
Cl20.22021 (5)0.29446 (7)0.32284 (4)0.0424 (2)
P10.19157 (4)0.59121 (7)0.38125 (4)0.02806 (17)
C1110.09258 (16)0.5977 (3)0.32882 (14)0.0316 (7)
C1120.07724 (19)0.6794 (3)0.27611 (15)0.0386 (7)
H11A0.11690.73260.26750.046*
C1130.0032 (2)0.6825 (3)0.23610 (17)0.0494 (9)
H11B0.00670.73910.20140.059*
C1140.0553 (2)0.6028 (4)0.24725 (18)0.0520 (10)
H11C0.10480.60500.22020.062*
C1150.04061 (19)0.5199 (4)0.29828 (18)0.0508 (9)
H11D0.08010.46470.30540.061*
C1160.03250 (18)0.5174 (3)0.33944 (16)0.0417 (8)
H11E0.04150.46160.37440.050*
C1210.20843 (17)0.7563 (3)0.41445 (14)0.0315 (7)
C1220.2748 (2)0.7740 (3)0.46276 (16)0.0452 (8)
H12A0.30910.70520.47510.054*
C1230.2907 (2)0.8923 (4)0.49275 (19)0.0559 (10)
H12B0.33450.90160.52610.067*
C1240.2429 (2)0.9950 (4)0.47395 (19)0.0562 (10)
H12C0.25421.07450.49420.067*
C1250.1782 (2)0.9815 (3)0.42524 (19)0.0547 (10)
H12D0.14611.05230.41160.066*
C1260.1605 (2)0.8617 (3)0.39623 (16)0.0430 (8)
H12E0.11560.85260.36400.052*
C1310.16632 (17)0.5131 (3)0.45301 (14)0.0350 (7)
C1320.1386 (2)0.5845 (4)0.49815 (18)0.0578 (10)
H13A0.13630.67400.49420.069*
C1330.1142 (3)0.5270 (4)0.5490 (2)0.0828 (16)
H13B0.09530.57750.57850.099*
C1340.1179 (3)0.3955 (4)0.5561 (2)0.0754 (14)
H13C0.10280.35680.59090.090*
C1350.1439 (2)0.3217 (4)0.5118 (2)0.0647 (11)
H13D0.14530.23220.51590.078*
C1360.1682 (2)0.3799 (3)0.46079 (17)0.0485 (9)
H13E0.18610.32860.43110.058*
P20.26561 (4)0.57378 (7)0.23985 (4)0.02910 (17)
C2110.17237 (18)0.5472 (3)0.18165 (14)0.0337 (7)
C2120.1466 (2)0.6279 (4)0.12963 (17)0.0577 (10)
H21A0.17540.70140.12460.069*
C2130.0781 (3)0.6003 (5)0.08490 (18)0.0713 (13)
H21B0.06070.65630.05070.086*
C2140.0359 (2)0.4905 (4)0.09095 (17)0.0631 (11)
H21C0.00920.47080.06030.076*
C2150.0604 (2)0.4106 (4)0.14206 (17)0.0536 (10)
H21D0.03210.33600.14630.064*
C2160.1271 (2)0.4399 (3)0.18753 (16)0.0449 (8)
H21E0.14190.38620.22300.054*
C2210.28413 (18)0.7468 (3)0.22798 (15)0.0344 (7)
C2220.26872 (18)0.8358 (3)0.27232 (16)0.0405 (8)
H22A0.25370.80660.30920.049*
C2230.2753 (2)0.9669 (3)0.2627 (2)0.0540 (10)
H22B0.26381.02510.29270.065*
C2240.2986 (3)1.0114 (4)0.2091 (2)0.0687 (12)
H22C0.30291.09970.20250.082*
C2250.3156 (3)0.9248 (4)0.1651 (2)0.0714 (13)
H22D0.33200.95490.12900.086*
C2260.3088 (2)0.7939 (3)0.17389 (18)0.0527 (9)
H22E0.32060.73640.14370.063*
C2310.33381 (18)0.4979 (3)0.19493 (14)0.0372 (7)
C2320.4127 (2)0.5332 (4)0.20829 (18)0.0529 (10)
H23A0.42940.60530.23360.063*
C2330.4668 (2)0.4602 (5)0.1836 (2)0.0725 (14)
H23B0.51970.48300.19300.087*
C2340.4424 (3)0.3548 (5)0.1456 (2)0.0802 (15)
H23C0.47880.30630.12930.096*
C2350.3650 (3)0.3213 (4)0.1316 (2)0.0735 (13)
H23D0.34860.25060.10520.088*
C2360.3109 (2)0.3911 (3)0.15613 (16)0.0495 (9)
H23E0.25830.36650.14660.059*
N10.38992 (15)0.3781 (3)0.32350 (12)0.0411 (7)
H1N10.37800.36230.28100.049*
H2N10.43250.42980.33060.049*
N20.34248 (15)0.4290 (3)0.44251 (12)0.0383 (6)
H1N20.38070.48560.45900.046*
H2N20.30430.43930.46470.046*
C10.4154 (2)0.2550 (3)0.35469 (16)0.0489 (9)
H1B0.45820.22140.33690.059*
H1C0.37220.19410.34450.059*
C20.3752 (2)0.3010 (4)0.45837 (17)0.0549 (10)
H2B0.33320.23820.44630.066*
H2C0.39340.29590.50460.066*
C30.4423 (2)0.2623 (3)0.42720 (15)0.0434 (8)
C40.5121 (2)0.3503 (4)0.44572 (19)0.0664 (12)
H4A0.49750.43640.43110.100*
H4B0.55390.32030.42630.100*
H4C0.52960.35050.49160.100*
C50.4653 (3)0.1253 (4)0.4505 (2)0.0764 (14)
H5A0.48280.12550.49630.115*
H5B0.50700.09500.43110.115*
H5C0.42060.06930.43860.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02516 (11)0.02601 (12)0.02646 (11)0.00136 (11)0.00557 (8)0.00011 (11)
Cl10.0348 (4)0.0439 (5)0.0458 (5)0.0102 (4)0.0044 (3)0.0005 (4)
Cl20.0489 (5)0.0297 (4)0.0447 (5)0.0058 (4)0.0014 (4)0.0002 (3)
P10.0275 (4)0.0273 (4)0.0300 (4)0.0013 (3)0.0073 (3)0.0002 (3)
C1110.0276 (15)0.0320 (16)0.0358 (16)0.0038 (13)0.0082 (13)0.0051 (13)
C1120.0390 (18)0.0373 (18)0.0391 (18)0.0005 (15)0.0074 (14)0.0027 (15)
C1130.051 (2)0.045 (2)0.046 (2)0.0098 (18)0.0050 (17)0.0030 (17)
C1140.0343 (18)0.058 (2)0.058 (2)0.0082 (18)0.0039 (17)0.014 (2)
C1150.0355 (17)0.058 (2)0.058 (2)0.0098 (17)0.0094 (16)0.007 (2)
C1160.0353 (16)0.046 (2)0.0440 (18)0.0061 (16)0.0079 (14)0.0025 (16)
C1210.0353 (16)0.0287 (15)0.0336 (17)0.0016 (13)0.0144 (13)0.0014 (13)
C1220.0430 (19)0.0414 (19)0.049 (2)0.0038 (16)0.0040 (16)0.0042 (16)
C1230.050 (2)0.055 (2)0.059 (2)0.0112 (19)0.0025 (18)0.018 (2)
C1240.065 (2)0.0357 (19)0.071 (3)0.011 (2)0.021 (2)0.022 (2)
C1250.069 (2)0.0305 (19)0.066 (2)0.0093 (18)0.017 (2)0.0052 (18)
C1260.0421 (19)0.0397 (19)0.046 (2)0.0055 (15)0.0079 (16)0.0052 (16)
C1310.0325 (15)0.0392 (18)0.0349 (15)0.0011 (15)0.0105 (12)0.0021 (15)
C1320.087 (3)0.041 (2)0.059 (2)0.005 (2)0.044 (2)0.0039 (18)
C1330.137 (4)0.057 (3)0.077 (3)0.013 (3)0.076 (3)0.008 (2)
C1340.108 (4)0.068 (3)0.064 (3)0.005 (3)0.051 (3)0.012 (2)
C1350.081 (3)0.047 (2)0.077 (3)0.006 (2)0.041 (2)0.017 (2)
C1360.060 (2)0.0385 (19)0.055 (2)0.0082 (17)0.0294 (19)0.0069 (17)
P20.0320 (4)0.0273 (4)0.0286 (4)0.0006 (3)0.0079 (3)0.0012 (3)
C2110.0368 (17)0.0363 (16)0.0278 (15)0.0032 (14)0.0064 (13)0.0006 (13)
C2120.058 (2)0.060 (2)0.047 (2)0.013 (2)0.0066 (18)0.0191 (19)
C2130.076 (3)0.086 (3)0.041 (2)0.011 (3)0.013 (2)0.025 (2)
C2140.056 (2)0.087 (3)0.040 (2)0.015 (2)0.0045 (17)0.001 (2)
C2150.049 (2)0.059 (2)0.050 (2)0.0125 (19)0.0036 (18)0.0034 (19)
C2160.045 (2)0.048 (2)0.0402 (19)0.0032 (17)0.0053 (16)0.0029 (16)
C2210.0362 (17)0.0280 (16)0.0389 (18)0.0026 (13)0.0075 (14)0.0050 (14)
C2220.0386 (18)0.0346 (17)0.047 (2)0.0010 (15)0.0074 (15)0.0031 (15)
C2230.061 (2)0.0294 (19)0.071 (3)0.0024 (16)0.012 (2)0.0012 (17)
C2240.088 (3)0.031 (2)0.087 (3)0.007 (2)0.020 (3)0.017 (2)
C2250.099 (3)0.049 (2)0.074 (3)0.006 (2)0.035 (3)0.023 (2)
C2260.071 (3)0.041 (2)0.050 (2)0.0000 (19)0.0215 (19)0.0081 (17)
C2310.0444 (17)0.0372 (16)0.0345 (16)0.0093 (17)0.0184 (13)0.0109 (16)
C2320.052 (2)0.054 (2)0.058 (2)0.0082 (18)0.0243 (18)0.0162 (18)
C2330.051 (2)0.089 (4)0.089 (3)0.017 (2)0.040 (2)0.039 (3)
C2340.099 (4)0.068 (3)0.092 (4)0.039 (3)0.063 (3)0.022 (3)
C2350.108 (4)0.061 (3)0.064 (3)0.023 (3)0.047 (3)0.002 (2)
C2360.068 (2)0.044 (2)0.042 (2)0.0088 (19)0.0224 (18)0.0015 (16)
N10.0444 (16)0.0454 (16)0.0353 (15)0.0172 (13)0.0121 (12)0.0037 (13)
N20.0378 (15)0.0464 (16)0.0313 (14)0.0102 (13)0.0090 (11)0.0033 (12)
C10.058 (2)0.043 (2)0.045 (2)0.0169 (18)0.0098 (17)0.0024 (17)
C20.071 (3)0.056 (2)0.040 (2)0.023 (2)0.0158 (18)0.0165 (18)
C30.0454 (19)0.046 (2)0.0381 (18)0.0177 (16)0.0075 (15)0.0056 (16)
C40.046 (2)0.087 (3)0.061 (3)0.007 (2)0.0016 (19)0.003 (2)
C50.102 (4)0.064 (3)0.066 (3)0.039 (3)0.022 (3)0.020 (2)
Geometric parameters (Å, º) top
Ru1—N12.184 (2)C213—C2141.374 (6)
Ru1—N22.185 (2)C213—H21B0.9300
Ru1—P12.3120 (8)C214—C2151.362 (5)
Ru1—P22.3370 (8)C214—H21C0.9300
Ru1—Cl22.4114 (8)C215—C2161.379 (5)
Ru1—Cl12.4131 (8)C215—H21D0.9300
P1—C1111.845 (3)C216—H21E0.9300
P1—C1211.849 (3)C221—C2221.385 (4)
P1—C1311.863 (3)C221—C2261.400 (4)
C111—C1121.387 (4)C222—C2231.381 (4)
C111—C1161.390 (4)C222—H22A0.9300
C112—C1131.386 (4)C223—C2241.371 (5)
C112—H11A0.9300C223—H22B0.9300
C113—C1141.370 (5)C224—C2251.374 (6)
C113—H11B0.9300C224—H22C0.9300
C114—C1151.366 (5)C225—C2261.376 (5)
C114—H11C0.9300C225—H22D0.9300
C115—C1161.384 (4)C226—H22E0.9300
C115—H11D0.9300C231—C2361.387 (5)
C116—H11E0.9300C231—C2321.391 (5)
C121—C1261.377 (4)C232—C2331.393 (5)
C121—C1221.388 (4)C232—H23A0.9300
C122—C1231.382 (5)C233—C2341.371 (7)
C122—H12A0.9300C233—H23B0.9300
C123—C1241.356 (5)C234—C2351.361 (7)
C123—H12B0.9300C234—H23C0.9300
C124—C1251.368 (5)C235—C2361.375 (5)
C124—H12C0.9300C235—H23D0.9300
C125—C1261.391 (5)C236—H23E0.9300
C125—H12D0.9300N1—C11.461 (4)
C126—H12E0.9300N1—H1N10.9000
C131—C1321.378 (4)N1—H2N10.9000
C131—C1361.387 (4)N2—C21.453 (4)
C132—C1331.380 (5)N2—H1N20.9000
C132—H13A0.9300N2—H2N20.9000
C133—C1341.369 (6)C1—C31.520 (4)
C133—H13B0.9300C1—H1B0.9700
C134—C1351.363 (5)C1—H1C0.9700
C134—H13C0.9300C2—C31.514 (5)
C135—C1361.386 (5)C2—H2B0.9700
C135—H13D0.9300C2—H2C0.9700
C136—H13E0.9300C3—C41.502 (5)
P2—C2111.843 (3)C3—C51.527 (5)
P2—C2211.846 (3)C4—H4A0.9600
P2—C2311.849 (3)C4—H4B0.9600
C211—C2161.383 (4)C4—H4C0.9600
C211—C2121.385 (4)C5—H5A0.9600
C212—C2131.389 (5)C5—H5B0.9600
C212—H21A0.9300C5—H5C0.9600
N1—Ru1—N282.35 (9)C212—C213—H21B119.9
N1—Ru1—P1170.31 (7)C215—C214—C213119.6 (3)
N2—Ru1—P189.14 (7)C215—C214—H21C120.2
N1—Ru1—P290.54 (7)C213—C214—H21C120.2
N2—Ru1—P2168.90 (7)C214—C215—C216120.3 (4)
P1—Ru1—P298.55 (3)C214—C215—H21D119.9
N1—Ru1—Cl283.77 (8)C216—C215—H21D119.9
N2—Ru1—Cl290.48 (8)C215—C216—C211121.6 (3)
P1—Ru1—Cl291.70 (3)C215—C216—H21E119.2
P2—Ru1—Cl297.25 (3)C211—C216—H21E119.2
N1—Ru1—Cl183.92 (8)C222—C221—C226117.9 (3)
N2—Ru1—Cl181.99 (8)C222—C221—P2119.1 (2)
P1—Ru1—Cl199.54 (3)C226—C221—P2122.9 (3)
P2—Ru1—Cl188.81 (3)C223—C222—C221121.2 (3)
Cl2—Ru1—Cl1166.33 (3)C223—C222—H22A119.4
C111—P1—C121104.52 (14)C221—C222—H22A119.4
C111—P1—C13199.29 (13)C224—C223—C222120.2 (4)
C121—P1—C13197.63 (14)C224—C223—H22B119.9
C111—P1—Ru1119.59 (9)C222—C223—H22B119.9
C121—P1—Ru1117.61 (10)C223—C224—C225119.6 (4)
C131—P1—Ru1114.61 (10)C223—C224—H22C120.2
C112—C111—C116118.3 (3)C225—C224—H22C120.2
C112—C111—P1120.5 (2)C224—C225—C226120.8 (4)
C116—C111—P1121.1 (2)C224—C225—H22D119.6
C113—C112—C111120.5 (3)C226—C225—H22D119.6
C113—C112—H11A119.8C225—C226—C221120.3 (4)
C111—C112—H11A119.8C225—C226—H22E119.8
C114—C113—C112120.5 (3)C221—C226—H22E119.8
C114—C113—H11B119.8C236—C231—C232118.6 (3)
C112—C113—H11B119.8C236—C231—P2120.8 (3)
C115—C114—C113119.7 (3)C232—C231—P2119.7 (3)
C115—C114—H11C120.1C231—C232—C233119.7 (4)
C113—C114—H11C120.1C231—C232—H23A120.1
C114—C115—C116120.6 (3)C233—C232—H23A120.1
C114—C115—H11D119.7C234—C233—C232120.3 (4)
C116—C115—H11D119.7C234—C233—H23B119.8
C115—C116—C111120.5 (3)C232—C233—H23B119.8
C115—C116—H11E119.8C235—C234—C233120.1 (4)
C111—C116—H11E119.8C235—C234—H23C120.0
C126—C121—C122117.7 (3)C233—C234—H23C120.0
C126—C121—P1125.9 (2)C234—C235—C236120.5 (4)
C122—C121—P1116.5 (2)C234—C235—H23D119.7
C123—C122—C121120.9 (3)C236—C235—H23D119.7
C123—C122—H12A119.6C235—C236—C231120.8 (4)
C121—C122—H12A119.6C235—C236—H23E119.6
C124—C123—C122120.5 (3)C231—C236—H23E119.6
C124—C123—H12B119.8C1—N1—Ru1123.7 (2)
C122—C123—H12B119.8C1—N1—H1N1106.4
C123—C124—C125120.0 (3)Ru1—N1—H1N1106.4
C123—C124—H12C120.0C1—N1—H2N1106.4
C125—C124—H12C120.0Ru1—N1—H2N1106.4
C124—C125—C126119.8 (3)H1N1—N1—H2N1106.5
C124—C125—H12D120.1C2—N2—Ru1123.7 (2)
C126—C125—H12D120.1C2—N2—H1N2106.4
C121—C126—C125121.1 (3)Ru1—N2—H1N2106.4
C121—C126—H12E119.4C2—N2—H2N2106.4
C125—C126—H12E119.4Ru1—N2—H2N2106.4
C132—C131—C136116.9 (3)H1N2—N2—H2N2106.5
C132—C131—P1121.2 (3)N1—C1—C3114.7 (3)
C136—C131—P1121.7 (2)N1—C1—H1B108.6
C131—C132—C133121.8 (4)C3—C1—H1B108.6
C131—C132—H13A119.1N1—C1—H1C108.6
C133—C132—H13A119.1C3—C1—H1C108.6
C134—C133—C132120.0 (4)H1B—C1—H1C107.6
C134—C133—H13B120.0N2—C2—C3116.1 (3)
C132—C133—H13B120.0N2—C2—H2B108.3
C135—C134—C133119.7 (4)C3—C2—H2B108.3
C135—C134—H13C120.1N2—C2—H2C108.3
C133—C134—H13C120.1C3—C2—H2C108.3
C134—C135—C136120.0 (4)H2B—C2—H2C107.4
C134—C135—H13D120.0C4—C3—C2112.3 (3)
C136—C135—H13D120.0C4—C3—C1110.9 (3)
C135—C136—C131121.5 (3)C2—C3—C1111.0 (3)
C135—C136—H13E119.2C4—C3—C5109.6 (3)
C131—C136—H13E119.2C2—C3—C5106.1 (3)
C211—P2—C221101.92 (14)C1—C3—C5106.7 (3)
C211—P2—C23199.08 (14)C3—C4—H4A109.5
C221—P2—C231101.03 (14)C3—C4—H4B109.5
C211—P2—Ru1124.38 (10)H4A—C4—H4B109.5
C221—P2—Ru1118.04 (10)C3—C4—H4C109.5
C231—P2—Ru1108.57 (10)H4A—C4—H4C109.5
C216—C211—C212117.5 (3)H4B—C4—H4C109.5
C216—C211—P2119.7 (2)C3—C5—H5A109.5
C212—C211—P2122.7 (3)C3—C5—H5B109.5
C211—C212—C213120.8 (4)H5A—C5—H5B109.5
C211—C212—H21A119.6C3—C5—H5C109.5
C213—C212—H21A119.6H5A—C5—H5C109.5
C214—C213—C212120.3 (4)H5B—C5—H5C109.5
C214—C213—H21B119.9

Experimental details

Crystal data
Chemical formula[RuCl2(C5H14N2)(C18H15P)2]
Mr798.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.393 (2), 10.3493 (16), 21.315 (2)
β (°) 102.181 (15)
V3)3750.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.60 × 0.60 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.687, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
7922, 7319, 5387
Rint0.025
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 1.03
No. of reflections7319
No. of parameters436
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.39, 0.51

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), HELENA (Spek, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), XCIF in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge The Deanship of Scientific Research at The University of Jordan for financial support and Universität Tübingen for the use of the measurement facilities. They also thank Dr C. Maichle-Moessmer for assistance with the data collection.

References

First citationClarke, M. (2002). Coord. Chem. Rev. 232, 69–93.  Web of Science CrossRef CAS
First citationDoucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A., Ikariya, T. & Noyori, R. (1998). Angew. Chem. Int. Ed. 37, 1703–1707.  CrossRef CAS
First citationDrozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074.  Web of Science CrossRef CAS
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
First citationLindner, E., Lu, Z.-L., Mayer, A. H., Speiser, B., Tittel, C. & Warad, I. (2005). Electrochem. Commun. 7, 1013–1020.  Web of Science CrossRef CAS
First citationLindner, E., Mayer, H. A., Warad, I. & Eichele, K. (2003a). J. Organomet. Chem. 665, 176–185.  Web of Science CSD CrossRef CAS
First citationLindner, E., Warad, I., Eichele, K. & Mayer, H. A. (2003b). Inorg. Chim. Acta, 350, 49–56.  Web of Science CSD CrossRef CAS
First citationNachtigall, C., Al-Gharabli, S., Eichele, K., Lindner, E. & Mayer, H. A. (2002). Organometallics, 21, 105–112.  Web of Science CSD CrossRef
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationNoyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: J. Wiley & Sons.
First citationNoyori, R. (2003). Adv. Synth. Catal. 345, 15–32.  Web of Science CrossRef CAS
First citationNoyori, R. & Ohkuma, T. (2001). Angew. Chem. Int. Ed. 40, 40–73.  Web of Science CrossRef CAS
First citationOhkuma, T., Koizumi, M., Muniz, K., Hilt, G., Kabuta, C. & Noyori, R. (2002). J. Am. Chem. Soc. 124, 6508–6509.  Web of Science CSD CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWarad, I., Al-Resayes, S. & Eichele, K. (2006). Z. Kristallogr. 221, 275–276.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m731-m732
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds