supplementary materials


dn2653 scheme

Acta Cryst. (2011). E67, o476-o477    [ doi:10.1107/S1600536811002467 ]

1,5-Dimethyl-4-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylidene)(thiophen-2-yl)methyl]amino}-2-phenyl-1H-pyrazol-3(2H)-one

H. Zhu, L. Ban, P. Zhang, X. Zhao and J. Ren

Abstract top

In the title compound, C26H23N5O2S, an intramolecular N-H...O interaction generates an S(6) ring. The essentially planar S(6) and pyrazole rings [maximum deviations = -0.0270 (14) and 0.0195 (15) Å, respectively] are nearly coplanar, making a dihedral angle of 3.94 (6)°. The S(6) ring makes dihedral angles of 23.79 (6), 78.53 (6) and 67.91 (6)° with the pyrazolone ring, the pyrazole ring and the benzene ring of antipyrine, respectively. The structure exhibits a thienyl-ring flip disorder with occupancy factors in the ratio 0.82:0.18.

Comment top

Pyrazolones form a very important class of heterocycles due to their properties and applications (Casas et al., 2007). Schiff-bases derived from 1-phenyl-3-methyl-4-acyl-5-pyrazolone have found extensive application in coordination chemistry (Shi et al., 2005)and in antibacterial activation (Zhang et al., 2008; Li et al., 2000). In continuation of our studies on pyrazolone schiff bases (Zhu et al., 2010a,b), we herein report the crystal structure of the title pyrazole compound.

The molecular structure of the title compound is shown in Fig. 1. An intramolecular N—H···O interaction generates a six- membered ring, producing an S(6) ring (O2 N3 C12 C17 C18), which stablizing the enamine–keto form of the compound. The S(6) ring and pyrazole ring (N4 N5 C17 C18 C19) are essentially planar,with the maximum deviations of -0.0270 (14) and 0.0195 (15) Å, respectively, at atoms C12 and C17.The two rings are coplanar to one another, as indicated by the dihedral angle formed between them of 3.94 (6)°. The S(6) ring makes dihedral angles of 23.79 (6)°,78.53 (6)° and 67.91 (6)° with the benzene ring of pyrazolone, the pyrazole ring and benzene ring of antipyrine,respectively. The bond lengths and angles agree well with those closely related pyrazole structures (Goh et al., 2009)

The structure exhibits a thienyl-ring flip disorder with the occupancy factors in the ratio 82/18.

Related literature top

For general background to pyrazolones, see: Casas et al. (2007). For the antibacterial activity of pyrazolone Schiff bases, see: Zhang et al. (2008); Li et al. (2000). For our previous work in this area, see: Zhu et al. (2010a,b). For related structures, see: Shi et al. (2005); Goh et al. (2009). For disordered thienyl rings, see: Crundwell et al. (2003).

Experimental top

The title compound was synthesized by refluxing the mixture of 1-phenyl-3-methyl-4-(2-thenoyl)pyrazolone-5 (HPMTP) (15m mol) and 4-antipyrine (15m mol) in ethanol (100 ml) over a steam bath for about 4 h, then the solution was cooled down to room temperature. After seven days, pale yellow block was obtained and dried in air. The product was recrystallized from ethanol which afforded pale yellow and acerate crystals suitable for X–ray analysis.

Refinement top

During refinement, the thienyl ring showed evidence of ring-flip disorder which is common for unsubstituted 2- and 3-thienyl rings (Crundwell et al., 2003). After finding three of the flipped disordered atoms in the difference map, the rest of the ring was generated and modeled. The occupancy factors of the disordered thienyl ring were first refine restraining the sum of the occupancy factore to be equal to 1.0. Once stabilised, the occupancy factors were fixed and not refined anymore. The final model suggested that the thienyl ring disorder was in the ratio 82/18. The disordered model was refined using the tools available in SHELXL-97 (Sheldrick, 2008): SADI for restraining distances, FLAT for constraining the thienyl rings to be planar, EXYZ for linking atoms occupying the same site and EADP to correlate anisotropic thermal parameters for related disordered atoms.

All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the aromatic, 0.96 Å for the methyl and N-H= 0.86 Å with Uiso(H)= 1.2 Ueq(Caromatic, N) or, 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii. Only the major component of the disordered thienyl ring is represented for the sake of clarity.
1,5-Dimethyl-4-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4- ylidene)(thiophen-2-yl)methyl]amino}-2-phenyl-1H-pyrazol- 3(2H)-one top
Crystal data top
C26H23N5O2SF(000) = 1968
Mr = 469.55Dx = 1.322 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 5913 reflections
a = 27.098 (3) Åθ = 2.6–27.9°
b = 7.9045 (8) ŵ = 0.17 mm1
c = 22.308 (2) ÅT = 293 K
β = 99.011 (8)°Prism, colourless
V = 4719.4 (9) Å30.42 × 0.36 × 0.34 mm
Z = 8
Data collection top
Rigaku Saturn
diffractometer
5570 independent reflections
Radiation source: rotating anode3806 reflections with I > 2σ(I)
multilayerRint = 0.037
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.6°
ω scansh = 3535
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 108
Tmin = 0.932, Tmax = 0.944l = 2929
22080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0825P)2]
where P = (Fo2 + 2Fc2)/3
5570 reflections(Δ/σ)max = 0.003
322 parametersΔρmax = 0.23 e Å3
22 restraintsΔρmin = 0.25 e Å3
Crystal data top
C26H23N5O2SV = 4719.4 (9) Å3
Mr = 469.55Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.098 (3) ŵ = 0.17 mm1
b = 7.9045 (8) ÅT = 293 K
c = 22.308 (2) Å0.42 × 0.36 × 0.34 mm
β = 99.011 (8)°
Data collection top
Rigaku Saturn
diffractometer
5570 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
3806 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.944Rint = 0.037
22080 measured reflectionsθmax = 27.9°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.144Δρmax = 0.23 e Å3
S = 1.02Δρmin = 0.25 e Å3
5570 reflectionsAbsolute structure: ?
322 parametersFlack parameter: ?
22 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.25433 (4)1.02510 (13)0.08661 (6)0.0607 (3)
O20.08792 (4)0.72515 (16)0.01432 (5)0.0574 (3)
N10.30507 (4)0.78662 (15)0.09168 (6)0.0454 (3)
N20.29718 (5)0.61104 (15)0.09307 (6)0.0453 (3)
N30.17055 (5)0.75910 (17)0.06681 (6)0.0490 (3)
H30.15580.75730.02980.059*
N40.01707 (5)0.77052 (16)0.03130 (6)0.0483 (3)
N50.00673 (5)0.81903 (18)0.08851 (7)0.0531 (4)
C10.25902 (6)0.87031 (19)0.08467 (7)0.0440 (4)
C20.22290 (5)0.73667 (18)0.07704 (7)0.0418 (3)
C30.24689 (6)0.58580 (18)0.07935 (7)0.0431 (3)
C40.22546 (7)0.4148 (2)0.06696 (9)0.0652 (5)
H4A0.19000.41900.06650.098*
H4B0.24020.33830.09810.098*
H4C0.23230.37620.02830.098*
C50.35010 (6)0.8549 (2)0.12487 (7)0.0473 (4)
C60.36892 (6)1.0029 (2)0.10435 (8)0.0560 (4)
H60.35231.05630.06980.067*
C70.41249 (7)1.0712 (3)0.13541 (11)0.0717 (6)
H70.42501.17200.12230.086*
C80.43721 (8)0.9902 (3)0.18544 (12)0.0836 (7)
H80.46671.03570.20600.100*
C90.41887 (8)0.8425 (3)0.20554 (10)0.0843 (6)
H90.43630.78760.23920.101*
C100.37464 (7)0.7747 (3)0.17596 (9)0.0655 (5)
H100.36160.67650.19030.079*
C110.33387 (7)0.4992 (2)0.07232 (9)0.0628 (5)
H11A0.33370.39180.09240.094*
H11B0.36650.54890.08160.094*
H11C0.32560.48320.02930.094*
C120.14164 (6)0.78314 (18)0.11001 (7)0.0431 (4)
S10.16071 (3)0.63681 (8)0.22363 (3)0.0702 (2)0.82
C130.16636 (6)0.79831 (19)0.17339 (7)0.0468 (4)0.82
C140.19533 (11)0.9188 (3)0.20297 (12)0.0704 (8)0.82
H140.20311.01690.18340.085*0.82
C150.21288 (18)0.8917 (6)0.26270 (14)0.0765 (8)0.82
H150.23300.96750.28740.092*0.82
C160.19767 (14)0.7430 (5)0.28143 (13)0.0709 (9)0.82
H160.20600.70180.32080.085*0.82
S1'0.20046 (19)0.9710 (5)0.1965 (2)0.0702 (2)0.18
C13'0.16636 (6)0.79831 (19)0.17339 (7)0.0468 (4)0.18
C14'0.1637 (5)0.6894 (16)0.2181 (5)0.0704 (8)0.18
H14'0.14630.58770.21230.085*0.18
C15'0.1879 (8)0.738 (2)0.2721 (6)0.0765 (8)0.18
H15'0.18950.67450.30750.092*0.18
C16'0.2097 (7)0.889 (2)0.2692 (6)0.0709 (9)0.18
H16'0.22780.94320.30250.085*0.18
C170.06744 (5)0.75638 (19)0.03103 (7)0.0449 (4)
C180.09039 (6)0.78841 (18)0.09237 (7)0.0437 (4)
C190.04936 (6)0.8289 (2)0.12425 (8)0.0504 (4)
C200.05032 (7)0.8851 (3)0.18855 (9)0.0727 (6)
H20A0.01810.92850.19340.109*
H20B0.07500.97210.19820.109*
H20C0.05850.79070.21530.109*
C210.02273 (6)0.75001 (19)0.01723 (7)0.0468 (4)
C220.01595 (7)0.6573 (2)0.06807 (8)0.0579 (4)
H220.01490.60820.07060.069*
C230.05544 (7)0.6384 (2)0.11491 (9)0.0648 (5)
H230.05110.57590.14900.078*
C240.10124 (7)0.7112 (2)0.11174 (9)0.0650 (5)
H240.12760.69860.14360.078*
C250.10744 (7)0.8021 (2)0.06118 (9)0.0618 (5)
H250.13830.85100.05880.074*
C260.06879 (6)0.8225 (2)0.01381 (9)0.0540 (4)
H260.07350.88440.02030.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0648 (7)0.0375 (6)0.0805 (9)0.0072 (5)0.0132 (6)0.0016 (5)
O20.0493 (6)0.0790 (8)0.0465 (7)0.0004 (6)0.0160 (5)0.0109 (6)
N10.0438 (7)0.0364 (7)0.0564 (8)0.0001 (5)0.0095 (6)0.0004 (5)
N20.0477 (8)0.0353 (7)0.0541 (8)0.0042 (5)0.0122 (6)0.0015 (5)
N30.0451 (7)0.0643 (8)0.0390 (7)0.0024 (6)0.0108 (6)0.0003 (6)
N40.0422 (7)0.0559 (8)0.0494 (8)0.0021 (6)0.0152 (6)0.0073 (6)
N50.0494 (8)0.0609 (9)0.0531 (8)0.0029 (6)0.0206 (7)0.0073 (6)
C10.0466 (9)0.0403 (8)0.0462 (9)0.0041 (7)0.0108 (7)0.0004 (6)
C20.0427 (8)0.0444 (8)0.0395 (8)0.0028 (6)0.0100 (6)0.0004 (6)
C30.0506 (9)0.0411 (8)0.0393 (8)0.0014 (7)0.0122 (7)0.0008 (6)
C40.0727 (12)0.0466 (10)0.0756 (13)0.0091 (9)0.0088 (10)0.0026 (8)
C50.0449 (9)0.0492 (9)0.0496 (9)0.0004 (7)0.0132 (7)0.0053 (7)
C60.0548 (10)0.0545 (10)0.0615 (11)0.0064 (8)0.0180 (8)0.0054 (8)
C70.0580 (12)0.0731 (13)0.0879 (15)0.0165 (10)0.0234 (11)0.0217 (11)
C80.0542 (12)0.1040 (18)0.0905 (17)0.0113 (12)0.0047 (12)0.0319 (14)
C90.0697 (14)0.1072 (18)0.0688 (14)0.0025 (13)0.0116 (11)0.0062 (13)
C100.0655 (12)0.0736 (13)0.0562 (11)0.0005 (10)0.0059 (9)0.0044 (9)
C110.0650 (11)0.0491 (10)0.0797 (13)0.0140 (8)0.0277 (10)0.0015 (9)
C120.0502 (9)0.0384 (8)0.0426 (8)0.0014 (6)0.0134 (7)0.0004 (6)
S10.0933 (5)0.0628 (5)0.0532 (4)0.0107 (4)0.0077 (3)0.0143 (3)
C130.0493 (9)0.0510 (9)0.0418 (8)0.0006 (7)0.0129 (7)0.0007 (7)
C140.111 (2)0.0564 (18)0.0461 (14)0.0152 (16)0.0183 (13)0.0058 (12)
C150.0871 (19)0.096 (2)0.0469 (15)0.0203 (15)0.0134 (14)0.0138 (14)
C160.079 (2)0.093 (2)0.0389 (14)0.0077 (16)0.0025 (13)0.0086 (14)
S1'0.0933 (5)0.0628 (5)0.0532 (4)0.0107 (4)0.0077 (3)0.0143 (3)
C13'0.0493 (9)0.0510 (9)0.0418 (8)0.0006 (7)0.0129 (7)0.0007 (7)
C14'0.111 (2)0.0564 (18)0.0461 (14)0.0152 (16)0.0183 (13)0.0058 (12)
C15'0.0871 (19)0.096 (2)0.0469 (15)0.0203 (15)0.0134 (14)0.0138 (14)
C16'0.079 (2)0.093 (2)0.0389 (14)0.0077 (16)0.0025 (13)0.0086 (14)
C170.0441 (9)0.0447 (8)0.0481 (9)0.0024 (7)0.0144 (7)0.0034 (6)
C180.0440 (9)0.0450 (8)0.0447 (8)0.0030 (6)0.0149 (7)0.0023 (6)
C190.0507 (10)0.0533 (9)0.0509 (9)0.0034 (7)0.0197 (8)0.0041 (7)
C200.0693 (12)0.0975 (16)0.0566 (11)0.0001 (10)0.0262 (9)0.0158 (10)
C210.0442 (9)0.0437 (8)0.0537 (9)0.0050 (7)0.0113 (7)0.0004 (7)
C220.0509 (10)0.0610 (11)0.0621 (11)0.0011 (8)0.0097 (8)0.0105 (8)
C230.0668 (12)0.0650 (12)0.0613 (12)0.0039 (9)0.0056 (9)0.0120 (9)
C240.0592 (11)0.0631 (12)0.0688 (12)0.0045 (9)0.0019 (9)0.0008 (9)
C250.0492 (10)0.0544 (11)0.0810 (14)0.0022 (8)0.0077 (9)0.0043 (9)
C260.0488 (10)0.0487 (9)0.0660 (11)0.0009 (7)0.0138 (8)0.0033 (8)
Geometric parameters (Å, °) top
O1—C11.2316 (17)C12—C181.384 (2)
O2—C171.2524 (16)C12—C131.472 (2)
N1—C11.3994 (19)S1—C131.7213 (16)
N1—N21.4054 (17)S1—C161.722 (3)
N1—C51.430 (2)C13—C141.340 (3)
N2—C31.3637 (19)C14—C151.360 (4)
N2—C111.4590 (19)C14—H140.9300
N3—C121.3471 (18)C15—C161.335 (3)
N3—C21.412 (2)C15—H150.9300
N3—H30.8600C16—H160.9300
N4—C171.3703 (19)S1'—C16'1.728 (10)
N4—N51.4023 (17)C14'—C15'1.336 (8)
N4—C211.413 (2)C14'—H14'0.9300
N5—C191.299 (2)C15'—C16'1.336 (8)
C1—C21.432 (2)C15'—H15'0.9300
C2—C31.355 (2)C16'—H16'0.9300
C3—C41.480 (2)C17—C181.434 (2)
C4—H4A0.9600C18—C191.446 (2)
C4—H4B0.9600C19—C201.498 (2)
C4—H4C0.9600C20—H20A0.9600
C5—C101.380 (2)C20—H20B0.9600
C5—C61.383 (2)C20—H20C0.9600
C6—C71.382 (3)C21—C261.386 (2)
C6—H60.9300C21—C221.387 (2)
C7—C81.368 (3)C22—C231.382 (3)
C7—H70.9300C22—H220.9300
C8—C91.371 (3)C23—C241.380 (3)
C8—H80.9300C23—H230.9300
C9—C101.382 (3)C24—C251.370 (3)
C9—H90.9300C24—H240.9300
C10—H100.9300C25—C261.376 (3)
C11—H11A0.9600C25—H250.9300
C11—H11B0.9600C26—H260.9300
C11—H11C0.9600
C1—N1—N2109.46 (11)C18—C12—C13123.81 (13)
C1—N1—C5123.58 (12)C13—S1—C1691.47 (12)
N2—N1—C5118.79 (12)C14—C13—C12132.40 (16)
C3—N2—N1106.84 (11)C14—C13—S1108.14 (15)
C3—N2—C11123.14 (13)C12—C13—S1119.45 (12)
N1—N2—C11118.55 (12)C13—C14—C15117.3 (3)
C12—N3—C2125.74 (14)C13—C14—H14121.3
C12—N3—H3117.1C15—C14—H14121.3
C2—N3—H3117.1C16—C15—C14111.6 (3)
C17—N4—N5111.56 (13)C16—C15—H15124.2
C17—N4—C21128.95 (13)C14—C15—H15124.2
N5—N4—C21119.43 (12)C15—C16—S1111.5 (3)
C19—N5—N4106.83 (12)C15—C16—H16124.2
O1—C1—N1124.12 (14)S1—C16—H16124.2
O1—C1—C2131.66 (14)C15'—C14'—H14'122.8
N1—C1—C2104.21 (12)C16'—C15'—C14'111.7 (12)
C3—C2—N3125.48 (14)C16'—C15'—H15'124.1
C3—C2—C1109.25 (13)C14'—C15'—H15'124.1
N3—C2—C1125.25 (13)C15'—C16'—S1'112.5 (11)
C2—C3—N2109.66 (13)C15'—C16'—H16'123.7
C2—C3—C4128.65 (15)S1'—C16'—H16'123.7
N2—C3—C4121.65 (14)O2—C17—N4125.97 (15)
C3—C4—H4A109.5O2—C17—C18128.66 (14)
C3—C4—H4B109.5N4—C17—C18105.36 (12)
H4A—C4—H4B109.5C12—C18—C17122.15 (13)
C3—C4—H4C109.5C12—C18—C19132.96 (15)
H4A—C4—H4C109.5C17—C18—C19104.85 (13)
H4B—C4—H4C109.5N5—C19—C18111.29 (14)
C10—C5—C6120.45 (17)N5—C19—C20119.07 (14)
C10—C5—N1121.06 (15)C18—C19—C20129.57 (16)
C6—C5—N1118.48 (15)C19—C20—H20A109.5
C7—C6—C5119.67 (19)C19—C20—H20B109.5
C7—C6—H6120.2H20A—C20—H20B109.5
C5—C6—H6120.2C19—C20—H20C109.5
C8—C7—C6119.8 (2)H20A—C20—H20C109.5
C8—C7—H7120.1H20B—C20—H20C109.5
C6—C7—H7120.1C26—C21—C22119.95 (16)
C7—C8—C9120.6 (2)C26—C21—N4119.76 (15)
C7—C8—H8119.7C22—C21—N4120.29 (14)
C9—C8—H8119.7C23—C22—C21119.30 (16)
C8—C9—C10120.4 (2)C23—C22—H22120.3
C8—C9—H9119.8C21—C22—H22120.3
C10—C9—H9119.8C24—C23—C22120.84 (18)
C5—C10—C9119.1 (2)C24—C23—H23119.6
C5—C10—H10120.5C22—C23—H23119.6
C9—C10—H10120.5C25—C24—C23119.24 (18)
N2—C11—H11A109.5C25—C24—H24120.4
N2—C11—H11B109.5C23—C24—H24120.4
H11A—C11—H11B109.5C24—C25—C26121.12 (17)
N2—C11—H11C109.5C24—C25—H25119.4
H11A—C11—H11C109.5C26—C25—H25119.4
H11B—C11—H11C109.5C25—C26—C21119.55 (17)
N3—C12—C18118.10 (14)C25—C26—H26120.2
N3—C12—C13118.08 (14)C21—C26—H26120.2
C1—N1—N2—C37.51 (15)N3—C12—C13—S1109.04 (14)
C5—N1—N2—C3157.23 (12)C18—C12—C13—S169.48 (18)
C1—N1—N2—C11152.10 (15)C16—S1—C13—C140.23 (16)
C5—N1—N2—C1158.19 (19)C16—S1—C13—C12179.22 (18)
C17—N4—N5—C192.41 (18)C12—C13—C14—C15179.3 (2)
C21—N4—N5—C19179.86 (14)S1—C13—C14—C150.51 (16)
N2—N1—C1—O1174.18 (15)C13—C14—C15—C160.6 (2)
C5—N1—C1—O126.2 (2)C14—C15—C16—S10.4 (2)
N2—N1—C1—C24.47 (15)C13—S1—C16—C150.1 (2)
C5—N1—C1—C2152.43 (14)C14'—C15'—C16'—S1'1.0 (5)
C12—N3—C2—C397.57 (19)N5—N4—C17—O2175.43 (15)
C12—N3—C2—C184.5 (2)C21—N4—C17—O21.7 (3)
O1—C1—C2—C3178.69 (17)N5—N4—C17—C183.33 (16)
N1—C1—C2—C30.18 (16)C21—N4—C17—C18179.53 (14)
O1—C1—C2—N33.1 (3)N3—C12—C18—C174.9 (2)
N1—C1—C2—N3178.36 (13)C13—C12—C18—C17173.64 (14)
N3—C2—C3—N2176.91 (13)N3—C12—C18—C19172.35 (16)
C1—C2—C3—N24.92 (17)C13—C12—C18—C199.1 (3)
N3—C2—C3—C45.7 (3)O2—C17—C18—C122.1 (3)
C1—C2—C3—C4172.46 (16)N4—C17—C18—C12179.21 (14)
N1—N2—C3—C27.60 (16)O2—C17—C18—C19175.83 (16)
C11—N2—C3—C2150.16 (14)N4—C17—C18—C192.88 (16)
N1—N2—C3—C4170.00 (14)N4—N5—C19—C180.41 (18)
C11—N2—C3—C427.4 (2)N4—N5—C19—C20177.69 (15)
C1—N1—C5—C10117.51 (17)C12—C18—C19—N5179.15 (16)
N2—N1—C5—C1027.7 (2)C17—C18—C19—N51.57 (18)
C1—N1—C5—C663.0 (2)C12—C18—C19—C202.2 (3)
N2—N1—C5—C6151.78 (13)C17—C18—C19—C20175.35 (18)
C10—C5—C6—C70.2 (2)C17—N4—C21—C26158.43 (15)
N1—C5—C6—C7179.70 (14)N5—N4—C21—C2618.5 (2)
C5—C6—C7—C81.3 (3)C17—N4—C21—C2221.8 (2)
C6—C7—C8—C90.7 (3)N5—N4—C21—C22161.24 (15)
C7—C8—C9—C101.0 (3)C26—C21—C22—C230.1 (3)
C6—C5—C10—C91.4 (3)N4—C21—C22—C23179.81 (15)
N1—C5—C10—C9178.03 (16)C21—C22—C23—C240.3 (3)
C8—C9—C10—C52.0 (3)C22—C23—C24—C250.4 (3)
C2—N3—C12—C18174.54 (14)C23—C24—C25—C260.2 (3)
C2—N3—C12—C134.1 (2)C24—C25—C26—C210.1 (3)
N3—C12—C13—C1469.7 (2)C22—C21—C26—C250.2 (2)
C18—C12—C13—C14111.8 (2)N4—C21—C26—C25179.99 (15)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.861.962.6631 (18)138
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.861.962.6631 (18)138
Acknowledgements top

The authors are grateful for financial support from the Spark Program Foundation of Science and Technology Department of China (research Nos. 09ZHXHNC07900 and 2010 GA610009). The authors also thank the Technical Staff Serving Enterprise Action Committee of the Science and Technology Department of China for financial support (research No. 2009 GJ A10022).

references
References top

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Casas, J. S., Garcl'a-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561–1589.

Crundwell, G., Sullivan, J., Pelto, R. & Kantardjieff, K. (2003). J. Chem. Crystallogr. 33, 239–244.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Goh, J. H., Fun, H.-K., Nithinchandra,, Rai, N. S. & Kalluraya, B. (2009). Acta Cryst. E65, o3099–o3100.

Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233–236.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320–m2321.

Zhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. Inorg. Chem. 24, 990–993.

Zhu, H., Wei, Z., Bu, L., Xu, X. & Shi, J. (2010a). Acta Cryst. E66, m904.

Zhu, H., Zhu, J., Ban, L., Zhang, P. & Zhang, M. (2010b). Acta Cryst. E66, o2724.