metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Undeca­carbonyl-1κ3C,2κ4C,3κ4C-(tri­ethyl phosphite-1κP)-triangulo-triruthenium(0)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 30 December 2010; accepted 11 January 2011; online 15 January 2011)

In the title triangulo-triruthenium compound, [Ru3(C6H15O3P)(CO)11], each Ru atom has distorted octa­hedral coord­ination geometry. The monodentate phosphine ligand is equatorially coordinated to one Ru atom, leaving one equatorial and two axial carbonyl substituents on the Ru atom. Each of the remaining two Ru atoms carries two equatorial and two axial carbonyl groups. In the crystal, mol­ecules are linked into an inversion dimer by a pair of inter­molecular C—H⋯O hydrogen bonds and the dimers are stacked along the b axis.

Related literature

For related structures, see: Bruce et al. (1988[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 181-205.]); Churchill et al. (1977[Churchill, M. R., Hollander, F. J. & Hutchison, P. J. (1977). Inorg. Chem. 16, 2655-2659.]). For the synthesis, see: Bruce et al. (1987[Bruce, M. I., Nicholson, B. K. & Williams, M. L. (1987). Inorg. Synth. 26, 273.]). For stability of the temperature controller used in data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C6H15O3P)(CO)11]

  • Mr = 777.47

  • Monoclinic, P 21 /c

  • a = 12.8866 (3) Å

  • b = 9.0955 (2) Å

  • c = 21.7772 (5) Å

  • β = 99.589 (1)°

  • V = 2516.84 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 100 K

  • 0.22 × 0.15 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.880

  • 48269 measured reflections

  • 13224 independent reflections

  • 10210 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.05

  • 13224 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.97 2.60 3.558 (3) 171
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Syntheses and crystallographic structures of substituted triangulo-triruthenium clusters have been of interest to researchers due to structural variation and catalytic activity. As part of our ongoing studies on phosphine substituted triangulo-triruthenium clusters, herein we report the structure of title compound, (I).

In the title compound, the monodantate phosphine ligand has replaced a carbonyl group in the equatorial plane of the Ru3 triangle. The triangulo-triruthenium is bonded equatorially to a monodentate phosphine ligand. The Ru2—Ru3 bond is noticeably longer [2.8605 (2) Å] compared to the other two Ru—Ru bonds [2.8348 (2) and 2.8436 (2) Å]. The unusual increase in the length of Ru—Ru bond in comparison with those of Ru3(CO)12 structure (Churchill et al., 1977) can be attributed to the steric effect induced by the bulky substituent.

As observed in Ru3(CO)12, the bond from metal atoms to the axial CO groups in complex (I) are longer (Ru—Cave = 1.941 Å) compared to the equatorial CO groups (Ru—Cave = 1.917 Å). The equatorial Ru—C—O moieties are linear (average angle: 178.30°) whereas the axial Ru—C—O moieties are slightly bent (average angle: 174.14°). Similar observations were made by Bruce and co-workers for the range of monosubstituted complexes synthesized by them (Bruce et al., 1988).

In the crystal structure, the molecules are linked into dimers by intermolecular C12—H12A···O2 hydrogen bonds and stacked down the b axis (Fig. 2 and Table 1).

Related literature top

For related structures, see: Bruce et al. (1988); Churchill et al. (1977). For the synthesis, see: Bruce et al. (1987). For stability of the temperature controller used in data collection, see: Cosier & Glazer (1986).

Experimental top

All the manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Shlenk technique. THF was dried over sodium wire and freshly distilled from sodium benzophenone ketyl solution. Radical anion method was used for the synthesis of complex (Bruce et al., 1987). The title compound (I) was prepared by mixing Ru3(CO)12 (Aldrich) and P(O–CH2CH3)3 (BDH Chemicals Ltd. Poole England) in a 1:1 molar ratio in THF at 313 K. Separation of the product in pure form was done by column chromatography (Florisil, 100–200 mesh, eluant, dicholomethane: hexane). IR (cyclohexane): γ (CO) 2100, 2045, 2031 and 2015 cm-1. Crystals suitable for X-ray diffraction were grown from dichlomethane/methanol solution at 283 K.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.01 and -1.23 e Å-3 were located 0.74 and 0.69 Å from atoms C12 and Ru3, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis, showing the molecules are linked into dimers. Hydrogen atoms not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity.
Undecacarbonyl-1κ3C,2κ4C,3κ4C- (triethyl phosphite-1κP)-triangulo-triruthenium(0) top
Crystal data top
[Ru3(C6H15O3P)(CO)11]F(000) = 1504
Mr = 777.47Dx = 2.052 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9999 reflections
a = 12.8866 (3) Åθ = 2.8–37.4°
b = 9.0955 (2) ŵ = 1.91 mm1
c = 21.7772 (5) ÅT = 100 K
β = 99.589 (1)°Plate, orange
V = 2516.84 (10) Å30.22 × 0.15 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
13224 independent reflections
Radiation source: fine-focus sealed tube10210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 37.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.681, Tmax = 0.880k = 1415
48269 measured reflectionsl = 3736
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.1586P]
where P = (Fo2 + 2Fc2)/3
13224 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.23 e Å3
Crystal data top
[Ru3(C6H15O3P)(CO)11]V = 2516.84 (10) Å3
Mr = 777.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8866 (3) ŵ = 1.91 mm1
b = 9.0955 (2) ÅT = 100 K
c = 21.7772 (5) Å0.22 × 0.15 × 0.07 mm
β = 99.589 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
13224 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
10210 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.880Rint = 0.049
48269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.05Δρmax = 1.01 e Å3
13224 reflectionsΔρmin = 1.23 e Å3
319 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.206479 (12)0.525270 (18)0.104476 (7)0.01058 (3)
Ru20.171824 (13)0.403007 (18)0.219080 (7)0.01213 (4)
Ru30.307938 (12)0.651191 (18)0.218302 (7)0.01164 (4)
P10.28271 (4)0.65310 (6)0.03363 (2)0.01287 (9)
O10.36303 (14)0.2725 (2)0.09811 (8)0.0216 (3)
O20.03380 (14)0.3498 (2)0.02588 (9)0.0236 (4)
O30.06213 (14)0.7945 (2)0.10448 (8)0.0226 (3)
O40.03552 (14)0.5757 (2)0.18670 (9)0.0234 (3)
O50.05504 (19)0.1252 (2)0.16827 (11)0.0359 (5)
O60.38235 (15)0.2370 (2)0.24542 (10)0.0292 (4)
O70.15360 (16)0.3907 (2)0.35704 (9)0.0281 (4)
O80.11480 (15)0.8168 (2)0.24884 (10)0.0301 (4)
O90.39514 (19)0.9359 (2)0.17244 (10)0.0331 (5)
O100.40533 (17)0.6511 (2)0.35681 (9)0.0302 (4)
O110.49842 (13)0.4816 (2)0.18586 (8)0.0208 (3)
O120.26748 (14)0.82648 (18)0.02947 (8)0.0176 (3)
O130.40697 (13)0.63666 (19)0.04805 (8)0.0186 (3)
O140.24886 (15)0.61629 (18)0.03883 (7)0.0194 (3)
C10.30697 (17)0.3662 (2)0.10385 (10)0.0147 (4)
C20.09977 (17)0.4158 (2)0.05380 (10)0.0155 (4)
C30.11634 (17)0.6941 (2)0.10820 (10)0.0156 (4)
C40.04387 (17)0.5178 (3)0.19786 (10)0.0168 (4)
C50.0981 (2)0.2289 (3)0.18692 (11)0.0207 (4)
C60.30722 (19)0.3036 (3)0.23406 (11)0.0193 (4)
C70.16199 (19)0.3959 (3)0.30638 (11)0.0190 (4)
C80.18282 (19)0.7500 (3)0.23584 (11)0.0196 (4)
C90.36313 (19)0.8289 (3)0.18873 (11)0.0201 (4)
C100.36806 (19)0.6518 (3)0.30534 (11)0.0193 (4)
C110.42440 (17)0.5392 (2)0.19592 (10)0.0153 (4)
C120.1837 (2)0.8957 (3)0.01318 (11)0.0199 (4)
H12A0.11980.83810.01590.024*
H12B0.20270.90100.05440.024*
C130.1655 (2)1.0469 (3)0.00963 (12)0.0241 (5)
H13A0.10961.09300.01840.036*
H13B0.22871.10400.01150.036*
H13C0.14671.04100.05040.036*
C140.4751 (2)0.7164 (3)0.01137 (12)0.0246 (5)
H14A0.43260.75880.02530.029*
H14B0.52480.64860.00230.029*
C150.5331 (2)0.8348 (3)0.04981 (16)0.0331 (6)
H15A0.58080.88200.02660.050*
H15B0.57210.79300.08720.050*
H15C0.48400.90580.06050.050*
C160.2421 (2)0.4681 (3)0.06278 (10)0.0187 (4)
H16A0.16940.43570.07060.022*
H16B0.28200.40180.03290.022*
C170.2865 (2)0.4684 (3)0.12234 (12)0.0249 (5)
H17A0.28520.37030.13870.037*
H17B0.35770.50350.11430.037*
H17C0.24490.53170.15210.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01067 (6)0.01134 (7)0.00955 (6)0.00004 (5)0.00112 (5)0.00073 (5)
Ru20.01260 (7)0.01192 (7)0.01229 (7)0.00088 (5)0.00334 (5)0.00087 (5)
Ru30.01155 (7)0.01239 (7)0.01087 (6)0.00163 (5)0.00152 (5)0.00204 (5)
P10.0155 (2)0.0126 (2)0.0107 (2)0.00183 (18)0.00276 (17)0.00072 (17)
O10.0209 (8)0.0210 (8)0.0220 (8)0.0069 (6)0.0007 (6)0.0032 (7)
O20.0208 (8)0.0180 (8)0.0288 (9)0.0028 (6)0.0056 (7)0.0038 (7)
O30.0234 (8)0.0226 (9)0.0229 (8)0.0073 (7)0.0066 (7)0.0014 (7)
O40.0166 (7)0.0254 (9)0.0290 (9)0.0012 (7)0.0062 (7)0.0055 (7)
O50.0462 (13)0.0249 (10)0.0380 (11)0.0166 (9)0.0112 (10)0.0098 (9)
O60.0238 (9)0.0294 (10)0.0353 (10)0.0089 (8)0.0075 (8)0.0125 (8)
O70.0357 (11)0.0326 (10)0.0172 (8)0.0016 (8)0.0075 (7)0.0009 (7)
O80.0245 (9)0.0294 (10)0.0372 (11)0.0040 (8)0.0076 (8)0.0160 (8)
O90.0475 (13)0.0230 (9)0.0294 (10)0.0131 (9)0.0081 (9)0.0009 (8)
O100.0352 (11)0.0374 (11)0.0158 (8)0.0047 (9)0.0026 (7)0.0027 (8)
O110.0152 (7)0.0235 (8)0.0233 (8)0.0009 (6)0.0018 (6)0.0056 (7)
O120.0223 (8)0.0123 (7)0.0173 (7)0.0014 (6)0.0005 (6)0.0005 (5)
O130.0146 (7)0.0231 (8)0.0195 (7)0.0038 (6)0.0064 (6)0.0077 (6)
O140.0314 (9)0.0153 (7)0.0109 (6)0.0033 (6)0.0015 (6)0.0005 (5)
C10.0141 (8)0.0164 (9)0.0130 (8)0.0016 (7)0.0004 (7)0.0001 (7)
C20.0157 (9)0.0141 (9)0.0159 (8)0.0019 (7)0.0003 (7)0.0002 (7)
C30.0169 (9)0.0171 (9)0.0140 (8)0.0007 (7)0.0058 (7)0.0011 (7)
C40.0154 (9)0.0176 (10)0.0177 (9)0.0034 (8)0.0041 (7)0.0015 (8)
C50.0246 (11)0.0203 (10)0.0180 (9)0.0028 (9)0.0062 (8)0.0013 (8)
C60.0196 (10)0.0185 (10)0.0202 (10)0.0001 (8)0.0048 (8)0.0055 (8)
C70.0200 (10)0.0180 (10)0.0191 (9)0.0001 (8)0.0042 (8)0.0003 (8)
C80.0199 (10)0.0203 (11)0.0181 (9)0.0018 (8)0.0021 (8)0.0075 (8)
C90.0229 (11)0.0208 (11)0.0164 (9)0.0042 (8)0.0025 (8)0.0030 (8)
C100.0207 (10)0.0206 (11)0.0169 (9)0.0005 (8)0.0043 (8)0.0033 (8)
C110.0143 (8)0.0175 (9)0.0135 (8)0.0040 (7)0.0002 (7)0.0016 (7)
C120.0238 (11)0.0162 (10)0.0175 (9)0.0046 (8)0.0033 (8)0.0022 (8)
C130.0307 (13)0.0167 (10)0.0248 (11)0.0060 (9)0.0041 (9)0.0006 (9)
C140.0213 (11)0.0305 (13)0.0247 (11)0.0007 (10)0.0120 (9)0.0073 (10)
C150.0271 (13)0.0315 (15)0.0424 (16)0.0030 (11)0.0109 (12)0.0071 (12)
C160.0248 (11)0.0177 (10)0.0138 (8)0.0025 (8)0.0036 (8)0.0032 (7)
C170.0323 (13)0.0234 (12)0.0222 (10)0.0039 (10)0.0134 (9)0.0061 (9)
Geometric parameters (Å, º) top
Ru1—C21.896 (2)O8—C81.140 (3)
Ru1—C31.935 (2)O9—C91.136 (3)
Ru1—C11.943 (2)O10—C101.144 (3)
Ru1—P12.2808 (6)O11—C111.141 (3)
Ru1—Ru22.8348 (2)O12—C121.446 (3)
Ru1—Ru32.8436 (2)O13—C141.472 (3)
Ru2—C51.918 (2)O14—C161.443 (3)
Ru2—C71.927 (2)C12—C131.494 (3)
Ru2—C41.941 (2)C12—H12A0.9700
Ru2—C61.944 (2)C12—H12B0.9700
Ru2—Ru32.8605 (2)C13—H13A0.9600
Ru3—C91.920 (2)C13—H13B0.9600
Ru3—C101.925 (2)C13—H13C0.9600
Ru3—C81.939 (2)C14—C151.487 (4)
Ru3—C111.942 (2)C14—H14A0.9700
P1—O131.5867 (17)C14—H14B0.9700
P1—O121.5899 (17)C15—H15A0.9600
P1—O141.6011 (17)C15—H15B0.9600
O1—C11.137 (3)C15—H15C0.9600
O2—C21.132 (3)C16—C171.502 (3)
O3—C31.144 (3)C16—H16A0.9700
O4—C41.140 (3)C16—H16B0.9700
O5—C51.134 (3)C17—H17A0.9600
O6—C61.134 (3)C17—H17B0.9600
O7—C71.127 (3)C17—H17C0.9600
C2—Ru1—C393.38 (9)C12—O12—P1122.72 (15)
C2—Ru1—C191.40 (9)C14—O13—P1121.31 (15)
C3—Ru1—C1175.12 (9)C16—O14—P1122.81 (14)
C2—Ru1—P1103.08 (7)O1—C1—Ru1174.12 (19)
C3—Ru1—P187.31 (7)O2—C2—Ru1176.8 (2)
C1—Ru1—P190.70 (7)O3—C3—Ru1173.60 (19)
C2—Ru1—Ru295.80 (7)O4—C4—Ru2174.5 (2)
C3—Ru1—Ru295.20 (6)O5—C5—Ru2179.4 (3)
C1—Ru1—Ru285.24 (6)O6—C6—Ru2174.3 (2)
P1—Ru1—Ru2160.779 (16)O7—C7—Ru2178.2 (2)
C2—Ru1—Ru3154.49 (7)O8—C8—Ru3174.2 (2)
C3—Ru1—Ru380.55 (6)O9—C9—Ru3178.3 (2)
C1—Ru1—Ru395.50 (6)O10—C10—Ru3178.8 (2)
P1—Ru1—Ru3101.362 (15)O11—C11—Ru3174.12 (19)
Ru2—Ru1—Ru360.497 (6)O12—C12—C13109.20 (19)
C5—Ru2—C7102.86 (10)O12—C12—H12A109.8
C5—Ru2—C490.43 (10)C13—C12—H12A109.8
C7—Ru2—C493.44 (10)O12—C12—H12B109.8
C5—Ru2—C693.06 (11)C13—C12—H12B109.8
C7—Ru2—C691.35 (10)H12A—C12—H12B108.3
C4—Ru2—C6173.31 (10)C12—C13—H13A109.5
C5—Ru2—Ru198.25 (7)C12—C13—H13B109.5
C7—Ru2—Ru1158.04 (7)H13A—C13—H13B109.5
C4—Ru2—Ru180.31 (7)C12—C13—H13C109.5
C6—Ru2—Ru193.53 (7)H13A—C13—H13C109.5
C5—Ru2—Ru3156.39 (7)H13B—C13—H13C109.5
C7—Ru2—Ru399.99 (7)O13—C14—C15109.9 (2)
C4—Ru2—Ru394.11 (7)O13—C14—H14A109.7
C6—Ru2—Ru380.44 (7)C15—C14—H14A109.7
Ru1—Ru2—Ru359.903 (6)O13—C14—H14B109.7
C9—Ru3—C10102.53 (10)C15—C14—H14B109.7
C9—Ru3—C892.44 (11)H14A—C14—H14B108.2
C10—Ru3—C890.93 (10)C14—C15—H15A109.5
C9—Ru3—C1190.71 (10)C14—C15—H15B109.5
C10—Ru3—C1192.73 (9)H15A—C15—H15B109.5
C8—Ru3—C11174.55 (9)C14—C15—H15C109.5
C9—Ru3—Ru1100.89 (7)H15A—C15—H15C109.5
C10—Ru3—Ru1155.64 (7)H15B—C15—H15C109.5
C8—Ru3—Ru194.69 (7)O14—C16—C17107.56 (19)
C11—Ru3—Ru180.35 (6)O14—C16—H16A110.2
C9—Ru3—Ru2158.16 (7)C17—C16—H16A110.2
C10—Ru3—Ru298.23 (7)O14—C16—H16B110.2
C8—Ru3—Ru280.43 (7)C17—C16—H16B110.2
C11—Ru3—Ru295.04 (6)H16A—C16—H16B108.5
Ru1—Ru3—Ru259.600 (6)C16—C17—H17A109.5
O13—P1—O12102.46 (9)C16—C17—H17B109.5
O13—P1—O14106.00 (10)H17A—C17—H17B109.5
O12—P1—O1498.07 (9)C16—C17—H17C109.5
O13—P1—Ru1110.63 (6)H17A—C17—H17C109.5
O12—P1—Ru1118.77 (7)H17B—C17—H17C109.5
O14—P1—Ru1118.86 (7)
C2—Ru1—Ru2—C519.56 (10)C4—Ru2—Ru3—C947.3 (2)
C3—Ru1—Ru2—C5113.51 (10)C6—Ru2—Ru3—C9128.8 (2)
C1—Ru1—Ru2—C571.37 (10)Ru1—Ru2—Ru3—C929.0 (2)
P1—Ru1—Ru2—C5149.73 (9)C5—Ru2—Ru3—C10145.0 (2)
Ru3—Ru1—Ru2—C5170.44 (8)C7—Ru2—Ru3—C1020.26 (10)
C2—Ru1—Ru2—C7144.3 (2)C4—Ru2—Ru3—C10114.49 (10)
C3—Ru1—Ru2—C750.4 (2)C6—Ru2—Ru3—C1069.43 (10)
C1—Ru1—Ru2—C7124.7 (2)Ru1—Ru2—Ru3—C10169.20 (7)
P1—Ru1—Ru2—C746.4 (2)C5—Ru2—Ru3—C8125.5 (2)
Ru3—Ru1—Ru2—C725.66 (19)C7—Ru2—Ru3—C869.29 (10)
C2—Ru1—Ru2—C469.46 (9)C4—Ru2—Ru3—C824.94 (10)
C3—Ru1—Ru2—C424.49 (9)C6—Ru2—Ru3—C8158.98 (10)
C1—Ru1—Ru2—C4160.39 (9)Ru1—Ru2—Ru3—C8101.24 (7)
P1—Ru1—Ru2—C4121.25 (8)C5—Ru2—Ru3—C1151.5 (2)
Ru3—Ru1—Ru2—C4100.54 (7)C7—Ru2—Ru3—C11113.76 (10)
C2—Ru1—Ru2—C6113.18 (10)C4—Ru2—Ru3—C11152.01 (9)
C3—Ru1—Ru2—C6152.88 (10)C6—Ru2—Ru3—C1124.07 (10)
C1—Ru1—Ru2—C622.25 (10)Ru1—Ru2—Ru3—C1175.70 (6)
P1—Ru1—Ru2—C656.11 (9)C5—Ru2—Ru3—Ru124.24 (19)
Ru3—Ru1—Ru2—C676.82 (7)C7—Ru2—Ru3—Ru1170.54 (7)
C2—Ru1—Ru2—Ru3170.00 (7)C4—Ru2—Ru3—Ru176.31 (7)
C3—Ru1—Ru2—Ru376.06 (7)C6—Ru2—Ru3—Ru199.77 (7)
C1—Ru1—Ru2—Ru399.07 (6)C2—Ru1—P1—O13130.84 (10)
P1—Ru1—Ru2—Ru320.71 (5)C3—Ru1—P1—O13136.31 (10)
C2—Ru1—Ru3—C9145.78 (17)C1—Ru1—P1—O1339.24 (10)
C3—Ru1—Ru3—C967.89 (10)Ru2—Ru1—P1—O1338.22 (10)
C1—Ru1—Ru3—C9109.23 (10)Ru3—Ru1—P1—O1356.51 (8)
P1—Ru1—Ru3—C917.40 (8)C2—Ru1—P1—O12111.15 (10)
Ru2—Ru1—Ru3—C9169.42 (8)C3—Ru1—P1—O1218.30 (10)
C2—Ru1—Ru3—C1050.4 (2)C1—Ru1—P1—O12157.25 (10)
C3—Ru1—Ru3—C10128.24 (19)Ru2—Ru1—P1—O1279.79 (9)
C1—Ru1—Ru3—C1054.64 (19)Ru3—Ru1—P1—O1261.50 (8)
P1—Ru1—Ru3—C10146.47 (17)C2—Ru1—P1—O147.90 (10)
Ru2—Ru1—Ru3—C1026.71 (17)C3—Ru1—P1—O14100.75 (10)
C2—Ru1—Ru3—C852.38 (17)C1—Ru1—P1—O1483.71 (10)
C3—Ru1—Ru3—C825.50 (10)Ru2—Ru1—P1—O14161.16 (8)
C1—Ru1—Ru3—C8157.38 (10)Ru3—Ru1—P1—O14179.46 (8)
P1—Ru1—Ru3—C8110.80 (8)O13—P1—O12—C12144.95 (18)
Ru2—Ru1—Ru3—C876.02 (8)O14—P1—O12—C1236.5 (2)
C2—Ru1—Ru3—C11125.36 (16)Ru1—P1—O12—C1292.85 (18)
C3—Ru1—Ru3—C11156.75 (9)O12—P1—O13—C1448.5 (2)
C1—Ru1—Ru3—C1120.36 (9)O14—P1—O13—C1453.7 (2)
P1—Ru1—Ru3—C1171.46 (7)Ru1—P1—O13—C14176.12 (17)
Ru2—Ru1—Ru3—C11101.72 (7)O13—P1—O14—C1678.01 (19)
C2—Ru1—Ru3—Ru223.64 (15)O12—P1—O14—C16176.48 (18)
C3—Ru1—Ru3—Ru2101.53 (6)Ru1—P1—O14—C1647.2 (2)
C1—Ru1—Ru3—Ru281.36 (6)P1—O12—C12—C13158.87 (18)
P1—Ru1—Ru3—Ru2173.181 (16)P1—O13—C14—C15109.1 (2)
C5—Ru2—Ru3—C953.2 (3)P1—O14—C16—C17139.24 (19)
C7—Ru2—Ru3—C9141.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.972.603.558 (3)171
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ru3(C6H15O3P)(CO)11]
Mr777.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.8866 (3), 9.0955 (2), 21.7772 (5)
β (°) 99.589 (1)
V3)2516.84 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.22 × 0.15 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.681, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
48269, 13224, 10210
Rint0.049
(sin θ/λ)max1)0.858
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.05
No. of reflections13224
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 1.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.972.603.558 (3)171
Symmetry code: (i) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

We gratefully acknowledge the funding from the Malaysian Government and Universiti Sains Malaysia (USM) under the University Research Grant 1001/PJJAUH/811115. MGA thanks USM for a Post-doctoral fellowship. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Nicholson, B. K. & Williams, M. L. (1987). Inorg. Synth. 26, 273.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChurchill, M. R., Hollander, F. J. & Hutchison, P. J. (1977). Inorg. Chem. 16, 2655–2659.  CSD CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds