organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Oxo-1,4-di­hydro­benzo[h][1,3]thia­zeto[3,2-a]quinoline-1,3-dicarb­­oxy­lic acid

aDepartment of Chemistry, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X7, and bSchool of Pharmacy, Memorial University of Newfoundland, St John's, NL, Canada A1B 3V6
*Correspondence e-mail: mohsen@mun.ca

(Received 17 January 2011; accepted 25 January 2011; online 29 January 2011)

In the title mol­ecule, C16H9NO5S, there is an intra­molecular O—H⋯O hydrogen bond involving the quinolone carbonyl O atom and a carboxyl OH group. In the crystal, inter­molecular O—H⋯O hydrogen bonds between the carbonyl group of the quinolone carboxyl group, and a second carboxyl group on the thia­zeto moiety lead to the formation of chains propagating along [201] and perpendicular to the π-stacks of mol­ecules.

Related literature

For background to the biological importance of thia­zetoquinoline anti­biotics, see: Ozaki et al. (1991[Ozaki, M., Matsuda, M., Tomii, Y., Kimura, K., Segawa, J., Kitano, M., Kise, M., Shibata, K., Otsuki, M. & Nishino, T. (1991). Antimicrob. Agents Chemother. 35, 2496-2499.]). For similar work using different procedures, see: Ito et al. (1992[Ito, Y., Kato, H., Yasuda, S., Yoshida, T. & Yamamoto, Y. (1992). JP 92-21664 (July 27, 1992).], 1994[Ito, Y., Kato, H., Yasuda, S., Yoshida, T. & Yamamoto, Y. (1994). JP 06016677 A (Jan 25, 1994).]); Matsuoka et al. (1999[Matsuoka, M., Segawa, J., Amimoto, I., Masui, Y., Tomii, Y., Kitano, M. & Kise, M. (1999). Chem. Pharm. Bull. (Tokyo), 47, 1765-1773.]).

[Scheme 1]

Experimental

Crystal data
  • C16H9NO5S

  • Mr = 327.31

  • Monoclinic, P 21 /c

  • a = 7.237 (2) Å

  • b = 16.171 (5) Å

  • c = 11.929 (4) Å

  • β = 106.081 (8)°

  • V = 1341.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 153 K

  • 0.18 × 0.04 × 0.04 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.974, Tmax = 0.996

  • 17300 measured reflections

  • 2769 independent reflections

  • 2614 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.164

  • S = 1.30

  • 2769 reflections

  • 214 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1 0.96 (4) 1.57 (4) 2.504 (4) 161 (4)
O3—H3⋯O4i 0.97 (3) 1.62 (3) 2.569 (4) 166 (3)
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
ππ inter­actions (Å, °)

Angle of elevation defined as the angle of the Cg(I)→Cg(J) vector and the normal to plane J. Cg1, Cg2 and Cg3 are the centroids of the C7–C12, N1/C1–C4/C13 and C4–C7/C12/C13 rings, respectively.

ππ Distance Angle of Elevation
Cg1⋯Cg2i 3.560 (2) 19.56
Cg3⋯Cg2i 3.644 (2) 22.75
Cg3⋯Cg3i 3.688 (2) 24.39
Symmetry code: (i) −x + 1, −y, −z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

4-oxo-1,4-dihydroquinoline-3-carboxylic acid derivatives (quinolones) are an important class of antibacterial agents, and a significant market exists for thiazetoquinoline antibiotics (Matsuoka et al.,1999; Ito et al., 1992; Ito et al., 1994; Ozaki et al., 1991). To this end, the title comound was obtained from the reaction of ethyl 2-{[2- ethoxy-2-oxoethyl)thio)-4-hydroxybenzo[h]quinoline-3-carboxylate with 1,2-dibromopropane in the presence of a catalytic amount of KI, followed by saponification using sodium hydroxide.

The molecular structure of the title molecule is shown in Fig. 1. It exhibits intra- (O5—H5a···O1) and intermolecular (O3—H3···O4i) hydrogen bonding (Table 1 and Fig. 2) leading to a chain-like arrangement of molecules which run along [201] and perpendicular to the π stacks (Fig. 2). Centroid-centroid distances range from 3.560 (2) to 3.688 (2) Å with angles of elevation between 19.56 and 24.39° (Table 2), while the inter-planar distance, as defined by the adjacent 14-atom (N1,C1—C13) ring system is 3.34 (1) Å.

Related literature top

For background to the biological importance of thiazetoquinoline antibiotics, see: Ozaki et al. (1991). For similar work using different procedures, see: Ito et al. (1992, 1994); Matsuoka et al. (1999).

Experimental top

To a mixture of ethyl 2-{[2- ethoxy-2-oxoethyl)thio)-4-hydroxybenzo[h]quinoline-3-carboxylate (1 mmol) and K2CO3 (2.8 mmol) in dry DMF (25 ml) under a nitrogen atmosphere was added 1,2-dibromopropane (2.8 mmol) along with a catlytic amount of KI. The reaction mixture was heated at 343 K for 24 h, and then poured into ice-H2O. The resulting thiazetoquinoline derivative was collected by filtration. The separated product was reacted with sodium hydroxide (2.2 mmol) in water (20 ml) and heated at 373 K for 3–4 h. After being cooled, the reaction mixture was neutralized with hydrochloric acid (1 mol/L), extracted with CH2Cl2, dried over MgSO4, and then evaporated. The obtained solid was purified by recrystallization from ethanol to afford the title compound as a yellowish white powder. Mp. 508 K, yield = 39%. 1H-NMR and 13C-NMR data are given in the archived CIF.

Refinement top

The OH H-atoms, H3 and H5a, were located from difference Fourier maps, and were refined with distance restraints: O-H = 0.96 (3) Å, with Uiso(H) = 1.2Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.95, 0.98, 0.99 and 1.0 Å for H-aromatic, H-methyl, H-methylene and methine H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for H-methyl and k = 1.2 for all other H-atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound. Both the hydrogen bonding [symmetry codes: (i) x-1, y, z; (ii) x, -y+1/2, z+1/2; (iii) x+1, y, z+1] and π···π interactions [symmetry codes: (ii) x, -y+1/2, z+1/2; (iv) -x+1, y+1/2, -z+1/2] are shown as dashed lines; ring centroids are marked by small spheres. See Tables 1 and 2 for details.
4-Oxo-1,4-dihydrobenzo[h][1,3]thiazeto[3,2-a]quinoline-1,3- dicarboxylic acid top
Crystal data top
C16H9NO5SF(000) = 672
Mr = 327.31Dx = 1.621 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 4915 reflections
a = 7.237 (2) Åθ = 2.2–30.6°
b = 16.171 (5) ŵ = 0.27 mm1
c = 11.929 (4) ÅT = 153 K
β = 106.081 (8)°Needle, colourless
V = 1341.5 (7) Å30.18 × 0.04 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2769 independent reflections
Radiation source: fine-focus sealed tube2614 reflections with I > 2σ(I)
Graphite - Rigaku SHINE monochromatorRint = 0.074
Detector resolution: 14.63 pixels mm-1θmax = 26.5°, θmin = 2.5°
ω scansh = 99
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
k = 2020
Tmin = 0.974, Tmax = 0.996l = 1414
17300 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.30 w = 1/[σ2(Fo2) + (0.0366P)2 + 2.1946P]
where P = (Fo2 + 2Fc2)/3
2769 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H9NO5SV = 1341.5 (7) Å3
Mr = 327.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.237 (2) ŵ = 0.27 mm1
b = 16.171 (5) ÅT = 153 K
c = 11.929 (4) Å0.18 × 0.04 × 0.04 mm
β = 106.081 (8)°
Data collection top
Rigaku Saturn
diffractometer
2769 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
2614 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.996Rint = 0.074
17300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0882 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.30Δρmax = 0.31 e Å3
2769 reflectionsΔρmin = 0.31 e Å3
214 parameters
Special details top

Experimental. Spectroscopic data:

1H-NMR: (500 MHz, DMSO-d6): δ= 8.27(1H, d, J=8.8), 8.25(1H, d, J=8.4), 8.17(1H, d, J=7.5), 8.02(1H, d, J=8.80), 7.83(1H, dd, J=11.0, 4.0), 7.81–7.76(1H, m), 7.73(1H, s)}.

13C-NMR: (500 MHz, DMSO-d6): δ= 175.76, 165.64, 165.25, 164.26, 136.09, 135.26, 129.58, 128.97, 127.58, 126.05, 122.67, 122.33, 121.53, 121.15, 103.64, 70.43.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60834 (14)0.26465 (6)0.14885 (8)0.0347 (3)
O10.5029 (4)0.01520 (17)0.3384 (2)0.0387 (7)
O20.2537 (4)0.33079 (19)0.0999 (3)0.0512 (8)
O30.1270 (4)0.25356 (17)0.0178 (2)0.0370 (6)
O40.7870 (4)0.20609 (17)0.3966 (2)0.0379 (7)
O50.7226 (4)0.08587 (19)0.4695 (2)0.0439 (7)
N10.4277 (4)0.14703 (17)0.0711 (2)0.0257 (6)
C10.5397 (5)0.1656 (2)0.1790 (3)0.0274 (7)
C20.5731 (5)0.1139 (2)0.2722 (3)0.0289 (8)
C30.4829 (5)0.0354 (2)0.2544 (3)0.0303 (8)
C40.3696 (5)0.0139 (2)0.1369 (3)0.0277 (8)
C50.2892 (5)0.0668 (2)0.1153 (3)0.0318 (8)
H50.31050.10570.17740.038*
C60.1828 (5)0.0887 (2)0.0074 (3)0.0317 (8)
H60.12970.14280.00480.038*
C70.1484 (5)0.0329 (2)0.0882 (3)0.0281 (8)
C80.0343 (5)0.0566 (2)0.2002 (3)0.0327 (8)
H80.01800.11080.21180.039*
C90.0019 (5)0.0027 (3)0.2920 (3)0.0364 (9)
H90.08190.01900.36610.044*
C100.0790 (6)0.0762 (2)0.2765 (3)0.0359 (9)
H100.05520.11300.34100.043*
C110.1927 (5)0.1015 (2)0.1696 (3)0.0324 (8)
H110.24750.15530.16110.039*
C120.2288 (5)0.0480 (2)0.0719 (3)0.0275 (8)
C130.3401 (5)0.0702 (2)0.0439 (3)0.0254 (7)
C140.4427 (5)0.2249 (2)0.0104 (3)0.0298 (8)
H140.50900.21740.05210.036*
C150.2618 (5)0.2759 (2)0.0304 (3)0.0327 (8)
C160.7025 (5)0.1379 (2)0.3852 (3)0.0332 (9)
H5A0.649 (6)0.039 (2)0.432 (4)0.052*
H30.008 (4)0.277 (2)0.029 (3)0.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0343 (5)0.0303 (5)0.0351 (5)0.0046 (4)0.0023 (4)0.0016 (4)
O10.0403 (16)0.0408 (16)0.0313 (14)0.0000 (12)0.0036 (12)0.0104 (12)
O20.0460 (17)0.0450 (17)0.062 (2)0.0053 (14)0.0138 (15)0.0244 (16)
O30.0304 (14)0.0391 (15)0.0396 (15)0.0034 (12)0.0065 (12)0.0059 (12)
O40.0335 (14)0.0420 (16)0.0337 (14)0.0013 (13)0.0022 (11)0.0073 (12)
O50.0438 (17)0.0558 (19)0.0260 (14)0.0055 (14)0.0006 (12)0.0038 (13)
N10.0257 (15)0.0240 (15)0.0263 (15)0.0017 (12)0.0053 (12)0.0024 (12)
C10.0220 (17)0.0300 (18)0.0289 (18)0.0005 (14)0.0051 (14)0.0049 (15)
C20.0265 (18)0.033 (2)0.0273 (18)0.0005 (15)0.0080 (14)0.0024 (15)
C30.0285 (18)0.036 (2)0.0268 (18)0.0060 (16)0.0076 (14)0.0044 (15)
C40.0243 (17)0.0300 (19)0.0294 (18)0.0035 (15)0.0087 (14)0.0009 (15)
C50.0285 (19)0.0283 (19)0.040 (2)0.0039 (15)0.0111 (16)0.0066 (16)
C60.0278 (18)0.0252 (19)0.042 (2)0.0007 (15)0.0092 (16)0.0008 (16)
C70.0237 (17)0.0275 (18)0.0326 (19)0.0035 (14)0.0072 (14)0.0029 (15)
C80.0259 (18)0.033 (2)0.039 (2)0.0002 (15)0.0076 (16)0.0087 (17)
C90.0282 (19)0.045 (2)0.031 (2)0.0022 (17)0.0004 (15)0.0106 (17)
C100.039 (2)0.038 (2)0.0280 (19)0.0004 (18)0.0058 (16)0.0025 (17)
C110.034 (2)0.0300 (19)0.0323 (19)0.0032 (16)0.0082 (16)0.0041 (16)
C120.0220 (17)0.0298 (19)0.0303 (18)0.0010 (14)0.0065 (14)0.0007 (15)
C130.0224 (16)0.0250 (17)0.0302 (18)0.0013 (14)0.0094 (14)0.0003 (15)
C140.0265 (18)0.0290 (19)0.0329 (19)0.0002 (15)0.0065 (15)0.0027 (15)
C150.035 (2)0.0271 (19)0.0325 (19)0.0016 (16)0.0029 (16)0.0013 (16)
C160.0300 (19)0.044 (2)0.0267 (19)0.0051 (17)0.0093 (15)0.0021 (17)
Geometric parameters (Å, º) top
S1—C11.744 (4)C5—C61.351 (5)
S1—C141.866 (4)C5—H50.9500
O1—C31.271 (4)C6—C71.421 (5)
O2—C151.205 (4)C6—H60.9500
O3—C151.314 (5)C7—C81.416 (5)
O3—H30.963 (19)C7—C121.423 (5)
O4—C161.250 (5)C8—C91.366 (5)
O5—C161.288 (5)C8—H80.9500
O5—H5A0.965 (19)C9—C101.394 (6)
N1—C11.350 (4)C9—H90.9500
N1—C131.392 (4)C10—C111.375 (5)
N1—C141.472 (4)C10—H100.9500
C1—C21.358 (5)C11—C121.416 (5)
C2—C31.416 (5)C11—H110.9500
C2—C161.464 (5)C12—C131.438 (5)
C3—C41.456 (5)C14—C151.509 (5)
C4—C131.406 (5)C14—H141.0000
C4—C51.423 (5)
C1—S1—C1473.49 (16)C7—C8—H8119.5
C15—O3—H3107 (3)C8—C9—C10119.8 (3)
C16—O5—H5A103 (3)C8—C9—H9120.1
C1—N1—C13122.3 (3)C10—C9—H9120.1
C1—N1—C1499.9 (3)C11—C10—C9121.1 (4)
C13—N1—C14137.7 (3)C11—C10—H10119.5
N1—C1—C2124.6 (3)C9—C10—H10119.5
N1—C1—S197.9 (2)C10—C11—C12120.5 (3)
C2—C1—S1137.5 (3)C10—C11—H11119.7
C1—C2—C3117.2 (3)C12—C11—H11119.7
C1—C2—C16121.0 (3)C11—C12—C7118.3 (3)
C3—C2—C16121.8 (3)C11—C12—C13124.3 (3)
O1—C3—C2120.8 (3)C7—C12—C13117.3 (3)
O1—C3—C4121.0 (3)N1—C13—C4115.7 (3)
C2—C3—C4118.2 (3)N1—C13—C12123.0 (3)
C13—C4—C5119.1 (3)C4—C13—C12121.3 (3)
C13—C4—C3121.8 (3)N1—C14—C15116.8 (3)
C5—C4—C3119.1 (3)N1—C14—S188.6 (2)
C6—C5—C4120.6 (3)C15—C14—S1112.6 (3)
C6—C5—H5119.7N1—C14—H14112.3
C4—C5—H5119.7C15—C14—H14112.3
C5—C6—C7121.7 (3)S1—C14—H14112.3
C5—C6—H6119.2O2—C15—O3127.1 (4)
C7—C6—H6119.2O2—C15—C14119.8 (4)
C8—C7—C6120.8 (3)O3—C15—C14113.1 (3)
C8—C7—C12119.2 (3)O4—C16—O5123.0 (3)
C6—C7—C12120.0 (3)O4—C16—C2120.2 (3)
C9—C8—C7121.0 (4)O5—C16—C2116.8 (4)
C9—C8—H8119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.96 (4)1.57 (4)2.504 (4)161 (4)
O3—H3···O4i0.97 (3)1.62 (3)2.569 (4)166 (3)
Symmetry code: (i) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H9NO5S
Mr327.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)7.237 (2), 16.171 (5), 11.929 (4)
β (°) 106.081 (8)
V3)1341.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.18 × 0.04 × 0.04
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.974, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
17300, 2769, 2614
Rint0.074
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.164, 1.30
No. of reflections2769
No. of parameters214
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.96 (4)1.57 (4)2.504 (4)161 (4)
O3—H3···O4i0.97 (3)1.62 (3)2.569 (4)166 (3)
Symmetry code: (i) x1, y+1/2, z1/2.
π···π interactions (Å, °) top
Angle of elevation defined as the angle of the Cg(I)Cg(J) vector and the normal to plane J. Cg1, Cg2 and Cg3 are the centroids of the C7–C12, N1/C1–C4/C13 and C4–C7/C12/C13 rings, respectively.
π···πDistanceAngle of Elevation
Cg1···Cg2i3.560 (2)19.56
Cg3···Cg2i3.644 (2)22.75
Cg3···Cg3i3.688 (2)24.39
Symmetry code: (i) -x+1, -y, -z.
 

References

First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIto, Y., Kato, H., Yasuda, S., Yoshida, T. & Yamamoto, Y. (1992). JP 92-21664 (July 27, 1992).  Google Scholar
First citationIto, Y., Kato, H., Yasuda, S., Yoshida, T. & Yamamoto, Y. (1994). JP 06016677 A (Jan 25, 1994).  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsuoka, M., Segawa, J., Amimoto, I., Masui, Y., Tomii, Y., Kitano, M. & Kise, M. (1999). Chem. Pharm. Bull. (Tokyo), 47, 1765–1773.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOzaki, M., Matsuda, M., Tomii, Y., Kimura, K., Segawa, J., Kitano, M., Kise, M., Shibata, K., Otsuki, M. & Nishino, T. (1991). Antimicrob. Agents Chemother. 35, 2496–2499.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds