organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-{2-[(E)-(2-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)amino]­ethyl­amino}­cyclo­pentene-1-carbodi­thio­ate

aDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, bDepartment of Chemistry, University of Lorestan, Lorestan, Iran, and cDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di Messina, 98166 Messina, Italy
*Correspondence e-mail: saiedmenati@gmail.com

(Received 19 January 2011; accepted 22 January 2011; online 29 January 2011)

In the title Schiff base compound, C17H22N2O2S2, which adopts an E configuration with respect to the imine C=N double bond, the C=N and N—C bond distances are 1.2789 (16) and 1.4546 (16) Å, respectively. In the mol­ecule there are intra­molecular O—H⋯N and N—H⋯S hydrogen bonds, and the CH=N—C substituent is almost coplanar with the benzene ring [C—N—C—C torsion angle = −178.80 (11)°]. The crystal packing is stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions involving the aromatic ring.

Related literature

For properties and applications of Schiff base compounds, see: Sabater et al. (1999[Sabater, M. J., Alvaro, M., Garcia, H., Palomares, E. & Sherrington, J. C. (1999). Chem. Soc. Rev. 28, 85-102.]); Di Bella & Fragala (2002[Di Bella, S. & Fragala, I. (2002). New J. Chem. 26, 285-290.]); Lecren et al. (2007[Lecren, L., Wernsdorfer, W., Li, Y.-T., Vindigni, A., Miyasaka, H. & Clerac, R. (2007). J. Am. Chem. Soc. 129, 5045-5051.]); Güngör & Gürkan (2010[Güngör, Ö. & Gürkan, P. (2010). Spectrochim. Acta Part A, 77, 304-311.]). For related structures, see: Pereira et al. (2008[Pereira, E., Gomes, L. R., Low, J. N. & de Castro, B. (2008). Polyhedron, 27, 335-343.]); Kumar et al. (1995[Kumar, S. B., Bhattacharyya, S., Dutta, S. K. & Tlekink, E. R. T. (1995). J. Chem. Soc. Dalton Trans. pp. 2619-2626.]); Asadi et al. (2009[Asadi, M., Mohammadi, K., Esmaielzadeh, S., Etemadi, B. & Fun, H. K. (2009). Polyhedron, 28, pp. 1409-1418.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22N2O2S2

  • Mr = 350.49

  • Triclinic, [P \overline 1]

  • a = 7.7933 (2) Å

  • b = 10.3486 (2) Å

  • c = 11.9532 (3) Å

  • α = 108.038 (1)°

  • β = 93.349 (1)°

  • γ = 100.296 (1)°

  • V = 895.19 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.56 × 0.45 × 0.34 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.678, Tmax = 0.746

  • 34525 measured reflections

  • 4761 independent reflections

  • 4235 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.109

  • S = 1.05

  • 4761 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2 0.86 2.32 3.0275 (11) 140
O2—H2⋯N2 0.82 1.85 2.5806 (14) 147
C9—H9B⋯O2i 0.97 2.51 3.1166 (16) 120
C1—H1CCgii 0.96 2.95 3.617 (2) 128
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Reflecting their usual relative ease of synthesis and excellent imine bonding properties, Schiff base compounds have been extensively investigated for more than a century. They have been employed in areas that include analytical and bioinorganic chemistry, non-linear optics, fluorescence studies, catalysis and materials chemistry (Sabater et al., 1999; Di Bella et al., 2002; Lecren et al., 2007). The development of simple methods to produce asymmetric products remains an area of considerable research activity (Güngör et al., 2010). In the other hand, it is well known that N and S atoms play a key role in the coordination of metals at the active sites of numerous metallobiomolecules. We are particularly interested in the synthesis and characterization of such asymmetric Schiff base compounds.

Three new asymmetric Schiff base compounds, (E)-methyl 2-(2-(2-hydroxy-3-methoxybenzylideneamino)ethylamino)cyclopent-1- enecarbodithioate (1), (E)-methyl 2-(2-(3,5-di-tert-butyl-2-hydroxybenzylideneamino)ethylamino) cyclopent-1-enecarbodithioate (2) and (E)-methyl 2-(2-(3-hydroxy-4-methoxybenzylideneamino)ethylamino) cyclopent-1- enecarbodithioate (3) have been prepared. Herein we report on the crystal structure of compound (1).

The molecular structure of compound (1) (Fig. 1) is similar to those of analogous derivatives (Pereira et al., 2008; Kumar et al., 1995; Asadi et al., 2009). The title molecule adopts an E configuration with respect to the imine CN double bond, with a C11—C10—N2—C9 torsion angle of -178.80 (11)°. The C12—O2 bond distance of 1.3377 (15) Å suggests that it is the phenol-imine tautomer. The contraction of the C10N2 bond [1.2789 (16) Å] is also in agreement with the phenol-imine tautomer. As for the methoxy group, the O1—C13 and O1—C17 bond distances are 1.365 (2) and 1.420 (2) Å, respectively, and the C13—O1—C17 bond angle is 116.50 (17) Å. The planarity of the molecule is stabilized by intramolecular O—H···N and N–H···S hydrogen bonds (Fig. 1 and Table 1). However, there are no intermolecular hydrogen bonds associated with the methoxy group.

The crystal packing in compound (1) is stabilized by C—H···O and C—H···π interactions; the later involving the aromatic ring (C11—C16) and the C1—H1C H-atom (Fig. 2 and Table 1).

Related literature top

For properties and applications of Schiff base compounds, see: Sabater et al. (1999); Di Bella et al. (2002); Lecren et al. (2007); Güngör et al. (2010). For related structures, see: Pereira et al. (2008); Kumar et al. (1995); Asadi et al. (2009).

Experimental top

Methyl-2-{N-(2-aminoethane)}-amino-1-cyclopentenedithiocarboxylate (Hcden) was prepared by literature methods. The compounds (1), (2) and (3) were prepared by the addition of an equimolar amount of a methanolic solution of the appropriate benzaldehydr, 2-hydroxy-3-methoxybenzaldehyde, 3,5-di-tert-butyl-2-hydroxybenzaldehyde and 3-hydroxy-4-methoxybenzaldehyde, respectively, to a methanolic solution of Hcden. The products obtained were recrystallized from methanol/chloroform 1:1 (V:V).

Refinement top

The H-atoms were included in calculated positons and treated as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atons, respectively, with with Uiso(H) = k × Ueq(C), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the compound (1), with displacement ellipsoids drawn at the 50% probability level. The intramolecular N—H···S and O—H···N hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of the crystal packing of compound (1), with the C—H···O and the C–H···π interactions shown as dotted lines [see Table 1 for details; H-atoms not involved in these interactions have been omitted for clarity].
Methyl 2-{2-[(E)-(2-hydroxy-3- methoxybenzylidene)amino]ethylamino}cyclopentene-1-carbodithioate top
Crystal data top
C17H22N2O2S2Z = 2
Mr = 350.49F(000) = 372
Triclinic, P1Dx = 1.300 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7933 (2) ÅCell parameters from 9856 reflections
b = 10.3486 (2) Åθ = 2.7–29.0°
c = 11.9532 (3) ŵ = 0.31 mm1
α = 108.038 (1)°T = 296 K
β = 93.349 (1)°Prismatic, black
γ = 100.296 (1)°0.56 × 0.45 × 0.34 mm
V = 895.19 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4761 independent reflections
Radiation source: fine-focus sealed tube4235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 29.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.678, Tmax = 0.746k = 1414
34525 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.160P]
where P = (Fo2 + 2Fc2)/3
4761 reflections(Δ/σ)max = 0.002
211 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H22N2O2S2γ = 100.296 (1)°
Mr = 350.49V = 895.19 (4) Å3
Triclinic, P1Z = 2
a = 7.7933 (2) ÅMo Kα radiation
b = 10.3486 (2) ŵ = 0.31 mm1
c = 11.9532 (3) ÅT = 296 K
α = 108.038 (1)°0.56 × 0.45 × 0.34 mm
β = 93.349 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4761 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4235 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.746Rint = 0.019
34525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
4761 reflectionsΔρmin = 0.23 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34940 (5)0.35488 (3)0.20000 (3)0.05017 (11)
S20.29009 (5)0.64159 (4)0.22423 (3)0.05473 (11)
O10.09386 (17)1.17333 (16)0.37397 (12)0.0836 (4)
O20.00507 (12)1.04545 (10)0.17106 (8)0.0511 (2)
H20.04951.00770.11230.077*
N10.21120 (14)0.62955 (11)0.03025 (9)0.0435 (2)
H10.21840.67270.04450.052*
N20.23401 (13)0.92834 (10)0.05271 (10)0.0433 (2)
C10.3828 (3)0.4423 (2)0.35518 (14)0.0785 (5)
H1A0.47440.52390.37310.118*
H1B0.41620.38170.39530.118*
H1C0.27610.46870.38100.118*
C20.29524 (14)0.47869 (11)0.13773 (10)0.0375 (2)
C30.26114 (14)0.42536 (11)0.01462 (10)0.0365 (2)
C40.22487 (13)0.49886 (11)0.06190 (9)0.0360 (2)
C50.20752 (18)0.40864 (13)0.18882 (10)0.0465 (3)
H5A0.31130.43240.22520.056*
H5B0.10540.41780.23390.056*
C60.1871 (2)0.26237 (15)0.18208 (13)0.0625 (4)
H6A0.24650.20670.24220.075*
H6B0.06390.21760.19380.075*
C70.2702 (2)0.27904 (13)0.05846 (11)0.0503 (3)
H7A0.20500.21170.02720.060*
H7B0.39110.26760.05960.060*
C80.18503 (17)0.70860 (13)0.10912 (11)0.0461 (3)
H8A0.06180.71210.11970.055*
H8B0.21890.66340.18610.055*
C90.29423 (16)0.85464 (13)0.05752 (12)0.0453 (3)
H9A0.41670.85090.04280.054*
H9B0.28500.90410.11380.054*
C100.33243 (16)0.95933 (13)0.15062 (12)0.0454 (3)
H100.44210.93560.14930.054*
C110.27848 (17)1.03029 (12)0.26352 (11)0.0461 (3)
C120.11586 (17)1.06993 (12)0.26856 (11)0.0449 (3)
C130.0665 (2)1.13836 (16)0.37903 (14)0.0592 (3)
C140.1797 (3)1.16566 (19)0.48081 (14)0.0744 (5)
H140.14661.21000.55410.089*
C150.3412 (3)1.1281 (2)0.47537 (15)0.0780 (5)
H150.41651.14870.54470.094*
C160.3908 (2)1.06093 (17)0.36880 (15)0.0652 (4)
H160.49931.03530.36580.078*
C170.1453 (3)1.2484 (3)0.4833 (2)0.1217 (11)
H17A0.14751.19490.53630.183*
H17B0.26031.26590.46960.183*
H17C0.06301.33510.51800.183*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0626 (2)0.04592 (18)0.04539 (17)0.01308 (14)0.00025 (14)0.01981 (13)
S20.0818 (3)0.04600 (18)0.03766 (16)0.02337 (16)0.00973 (15)0.00942 (13)
O10.0729 (7)0.0936 (10)0.0702 (8)0.0283 (7)0.0167 (6)0.0007 (7)
O20.0478 (5)0.0523 (5)0.0496 (5)0.0163 (4)0.0034 (4)0.0101 (4)
N10.0560 (6)0.0407 (5)0.0373 (5)0.0170 (4)0.0067 (4)0.0138 (4)
N20.0452 (5)0.0389 (5)0.0488 (5)0.0130 (4)0.0043 (4)0.0167 (4)
C10.1227 (16)0.0735 (11)0.0439 (7)0.0214 (10)0.0018 (9)0.0266 (7)
C20.0363 (5)0.0385 (5)0.0389 (5)0.0075 (4)0.0053 (4)0.0142 (4)
C30.0356 (5)0.0345 (5)0.0381 (5)0.0071 (4)0.0032 (4)0.0105 (4)
C40.0321 (4)0.0382 (5)0.0369 (5)0.0070 (4)0.0033 (4)0.0112 (4)
C50.0549 (7)0.0438 (6)0.0359 (5)0.0074 (5)0.0013 (5)0.0088 (5)
C60.0919 (11)0.0417 (7)0.0447 (7)0.0121 (7)0.0077 (7)0.0050 (5)
C70.0654 (8)0.0371 (6)0.0449 (6)0.0130 (5)0.0009 (5)0.0085 (5)
C80.0547 (6)0.0463 (6)0.0427 (6)0.0181 (5)0.0050 (5)0.0183 (5)
C90.0466 (6)0.0467 (6)0.0522 (7)0.0177 (5)0.0123 (5)0.0240 (5)
C100.0434 (6)0.0392 (6)0.0575 (7)0.0114 (4)0.0007 (5)0.0208 (5)
C110.0531 (6)0.0378 (5)0.0486 (6)0.0098 (5)0.0049 (5)0.0174 (5)
C120.0517 (6)0.0365 (5)0.0459 (6)0.0074 (5)0.0000 (5)0.0146 (5)
C130.0685 (9)0.0524 (7)0.0531 (8)0.0121 (6)0.0091 (6)0.0119 (6)
C140.1066 (14)0.0683 (10)0.0437 (7)0.0165 (10)0.0050 (8)0.0136 (7)
C150.1076 (14)0.0729 (11)0.0508 (8)0.0220 (10)0.0196 (9)0.0196 (8)
C160.0735 (9)0.0595 (8)0.0619 (9)0.0192 (7)0.0176 (7)0.0202 (7)
C170.0930 (15)0.127 (2)0.1020 (17)0.0243 (15)0.0333 (13)0.0292 (16)
Geometric parameters (Å, º) top
S1—C21.7666 (11)C6—H6A0.9700
S1—C11.7740 (16)C6—H6B0.9700
S2—C21.6918 (12)C7—H7A0.9700
O1—C131.365 (2)C7—H7B0.9700
O1—C171.420 (2)C8—C91.5134 (18)
O2—C121.3377 (15)C8—H8A0.9700
O2—H20.8201C8—H8B0.9700
N1—C41.3126 (15)C9—H9A0.9700
N1—C81.4541 (15)C9—H9B0.9700
N1—H10.8595C10—C111.4493 (19)
N2—C101.2789 (16)C10—H100.9300
N2—C91.4546 (16)C11—C121.3991 (18)
C1—H1A0.9600C11—C161.4055 (18)
C1—H1B0.9600C12—C131.4037 (19)
C1—H1C0.9600C13—C141.382 (2)
C2—C31.3926 (15)C14—C151.381 (3)
C3—C41.4046 (15)C14—H140.9300
C3—C71.5124 (16)C15—C161.364 (3)
C4—C51.4984 (15)C15—H150.9300
C5—C61.521 (2)C16—H160.9300
C5—H5A0.9700C17—H17A0.9600
C5—H5B0.9700C17—H17B0.9600
C6—C71.5243 (19)C17—H17C0.9600
C2—S1—C1104.65 (7)N1—C8—C9109.96 (10)
C13—O1—C17116.50 (17)N1—C8—H8A109.7
C12—O2—H2109.5C9—C8—H8A109.7
C4—N1—C8126.44 (10)N1—C8—H8B109.7
C4—N1—H1116.8C9—C8—H8B109.7
C8—N1—H1116.7H8A—C8—H8B108.2
C10—N2—C9119.45 (11)N2—C9—C8110.36 (10)
S1—C1—H1A109.5N2—C9—H9A109.6
S1—C1—H1B109.5C8—C9—H9A109.6
H1A—C1—H1B109.5N2—C9—H9B109.6
S1—C1—H1C109.5C8—C9—H9B109.6
H1A—C1—H1C109.5H9A—C9—H9B108.1
H1B—C1—H1C109.5N2—C10—C11122.07 (11)
C3—C2—S2126.69 (9)N2—C10—H10119.0
C3—C2—S1112.17 (8)C11—C10—H10119.0
S2—C2—S1121.14 (7)C12—C11—C16119.61 (14)
C2—C3—C4126.43 (10)C12—C11—C10120.49 (11)
C2—C3—C7124.42 (10)C16—C11—C10119.90 (13)
C4—C3—C7109.03 (10)O2—C12—C11122.13 (12)
N1—C4—C3126.24 (10)O2—C12—C13118.47 (12)
N1—C4—C5122.93 (10)C11—C12—C13119.40 (12)
C3—C4—C5110.81 (10)O1—C13—C14125.93 (15)
C4—C5—C6103.91 (10)O1—C13—C12114.69 (14)
C4—C5—H5A111.0C14—C13—C12119.38 (15)
C6—C5—H5A111.0C15—C14—C13121.06 (16)
C4—C5—H5B111.0C15—C14—H14119.5
C6—C5—H5B111.0C13—C14—H14119.5
H5A—C5—H5B109.0C16—C15—C14120.29 (15)
C5—C6—C7105.86 (10)C16—C15—H15119.9
C5—C6—H6A110.6C14—C15—H15119.9
C7—C6—H6A110.6C15—C16—C11120.26 (16)
C5—C6—H6B110.6C15—C16—H16119.9
C7—C6—H6B110.6C11—C16—H16119.9
H6A—C6—H6B108.7O1—C17—H17A109.5
C3—C7—C6104.22 (10)O1—C17—H17B109.5
C3—C7—H7A110.9H17A—C17—H17B109.5
C6—C7—H7A110.9O1—C17—H17C109.5
C3—C7—H7B110.9H17A—C17—H17C109.5
C6—C7—H7B110.9H17B—C17—H17C109.5
H7A—C7—H7B108.9
C1—S1—C2—C3178.88 (11)N1—C8—C9—N264.63 (13)
C1—S1—C2—S21.58 (11)C9—N2—C10—C11178.80 (11)
S2—C2—C3—C43.59 (17)N2—C10—C11—C121.23 (19)
S1—C2—C3—C4175.92 (9)N2—C10—C11—C16179.42 (12)
S2—C2—C3—C7179.08 (10)C16—C11—C12—O2178.90 (13)
S1—C2—C3—C70.43 (15)C10—C11—C12—O20.45 (18)
C8—N1—C4—C3175.70 (11)C16—C11—C12—C130.74 (19)
C8—N1—C4—C52.59 (19)C10—C11—C12—C13179.91 (12)
C2—C3—C4—N12.38 (19)C17—O1—C13—C142.1 (3)
C7—C3—C4—N1178.45 (11)C17—O1—C13—C12177.20 (19)
C2—C3—C4—C5176.08 (11)O2—C12—C13—O10.1 (2)
C7—C3—C4—C50.01 (13)C11—C12—C13—O1179.54 (13)
N1—C4—C5—C6166.44 (12)O2—C12—C13—C14179.49 (14)
C3—C4—C5—C615.04 (14)C11—C12—C13—C140.2 (2)
C4—C5—C6—C723.83 (16)O1—C13—C14—C15178.55 (18)
C2—C3—C7—C6168.79 (12)C12—C13—C14—C150.7 (3)
C4—C3—C7—C615.05 (15)C13—C14—C15—C161.1 (3)
C5—C6—C7—C323.93 (16)C14—C15—C16—C110.5 (3)
C4—N1—C8—C9140.36 (12)C12—C11—C16—C150.4 (2)
C10—N2—C9—C8111.43 (12)C10—C11—C16—C15179.77 (15)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.862.323.0275 (11)140
O2—H2···N20.821.852.5806 (14)147
C9—H9B···O2i0.972.513.1166 (16)120
C1—H1C···Cgii0.962.953.617 (2)128
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H22N2O2S2
Mr350.49
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7933 (2), 10.3486 (2), 11.9532 (3)
α, β, γ (°)108.038 (1), 93.349 (1), 100.296 (1)
V3)895.19 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.56 × 0.45 × 0.34
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.678, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
34525, 4761, 4235
Rint0.019
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.109, 1.05
No. of reflections4761
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.862.323.0275 (11)140
O2—H2···N20.821.852.5806 (14)147
C9—H9B···O2i0.972.513.1166 (16)120
C1—H1C···Cgii0.962.953.617 (2)128
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z.
 

References

First citationAsadi, M., Mohammadi, K., Esmaielzadeh, S., Etemadi, B. & Fun, H. K. (2009). Polyhedron, 28, pp. 1409–1418.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Bella, S. & Fragala, I. (2002). New J. Chem. 26, 285–290.  Web of Science CrossRef CAS Google Scholar
First citationGüngör, Ö. & Gürkan, P. (2010). Spectrochim. Acta Part A, 77, 304–311.  Google Scholar
First citationKumar, S. B., Bhattacharyya, S., Dutta, S. K. & Tlekink, E. R. T. (1995). J. Chem. Soc. Dalton Trans. pp. 2619–2626.  CSD CrossRef Web of Science Google Scholar
First citationLecren, L., Wernsdorfer, W., Li, Y.-T., Vindigni, A., Miyasaka, H. & Clerac, R. (2007). J. Am. Chem. Soc. 129, 5045–5051.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPereira, E., Gomes, L. R., Low, J. N. & de Castro, B. (2008). Polyhedron, 27, 335–343.  Web of Science CSD CrossRef CAS Google Scholar
First citationSabater, M. J., Alvaro, M., Garcia, H., Palomares, E. & Sherrington, J. C. (1999). Chem. Soc. Rev. 28, 85–102.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds