organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-(4-Chloro­benzyl­­idene)amino]-1-phenyl­thio­urea

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 March 2011; accepted 9 March 2011; online 12 March 2011)

In the title compound, C14H12ClN3S, the dihedral angle between the terminal benzene rings is 56.6 (2)°; the benzene rings lie to the same side of the mol­ecule. The major twist in the mol­ecule occurs around the Car—N bond (ar is aromatic) [C—N—C—C = 49.9 (5)°]. The configuration about the N=C bond [1.271 (4) Å] is E. The amine H atoms lie on opposite sides of the mol­ecule with one forming an intra­molecular N—H⋯N(imine) hydrogen bond and an S(5) ring. In the crystal, centrosymmetric dimers are formed via {⋯HNC=S}2 synthons.

Related literature

For related structures, see: Cunha et al. (2007[Cunha, S., Macedo Junior, F. C. M., Costa, G. A. N., Rodrigues Junior, M. T., Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sa, F. P. (2007). Monatsh. Chem. 138, 511-516.]); Kayed et al. (2008[Kayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824-o825.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClN3S

  • Mr = 289.78

  • Monoclinic, P 21 /n

  • a = 15.082 (5) Å

  • b = 6.560 (2) Å

  • c = 15.205 (5) Å

  • β = 110.272 (8)°

  • V = 1411.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.39 × 0.21 × 0.02 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.857, Tmax = 0.992

  • 8647 measured reflections

  • 2905 independent reflections

  • 1572 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.137

  • S = 1.00

  • 2905 reflections

  • 178 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3 0.85 (2) 2.16 (4) 2.601 (4) 112 (3)
N2—H2n⋯S1i 0.86 (3) 2.57 (3) 3.401 (3) 164 (2)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was investigated in continuation of structural studies of substituted thiosemicarbazone molecules (Kayed et al., 2008). The configuration about the N3C8 bond [1.271 (4) Å] in (I), Fig. 1, is E. The C1-benzene ring is twisted out of the plane of the thiourea moiety as seen in the value of the C7—N1—C1—C2 torsion angle of 49.9 (5) °; the dihedral angle between the C7,N1,N2,S1 [r.m.s. = 0.0155 Å] and C1–C6 planes is 51.06 (13) °. By contrast, the C9-benzene ring is co-planar with the imine moiety, with N3—C8—C9—C10 being -6.3 (5) °. The dihedral angle formed between the benzene rings is 56.6 (2) °. The amine groups lie on opposite sides of the molecule allowing for the formation of an intramolecular N1—H1n···N3 hydrogen bond, Table 1. The result is that the benzene rings lie to the same side of the molecule. Overall the conformation of the molecule is a twisted U-shape. The geometric parameters in and the overall conformation of (I) match very closely those found in the unsubstituted parent compound (Cunha et al., 2007).

The major feature of the crystal packing is the formation of centrosymmetric dimers via N—H···S hydrogen bonds, Table 1 and Fig. 2.

Related literature top

For related structures, see: Cunha et al. (2007); Kayed et al. (2008).

Experimental top

The title compound was prepared by heating an ethanolic (50 ml) solution of 4-chlorobenzaldehyde (1.406 g, 10 mmol) and 4-phenylthiosemicarbazide (1.672 g, 10 mmol) under reflux for 1 h. The resulting product was isolated and recrystallized from DMSO to afford light pink plates in 72% yield (M.pt. 470–472 K). IR (KBr): Strong absorption bands for thiocarbonyl ν(CS), azomethine ν(CN) and hydrazinic nitrogen ν(N—N) appeared at 1199, 1600 and 1083 cm-1, respectively. Absorption bands for ν(C—Cl) and aromatic carbon ν(CC) appeared at 833 and 1510 cm-1, respectively.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H atoms were refined with the distance restraint 0.86±0.01 Å with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I) showing the packing: the N–H···S hydrogen bonds are shown as orange dashed lines.
3-[(E)-(4-Chlorobenzylidene)amino]-1-phenylthiourea top
Crystal data top
C14H12ClN3SF(000) = 600
Mr = 289.78Dx = 1.364 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 752 reflections
a = 15.082 (5) Åθ = 2.4–19.2°
b = 6.560 (2) ŵ = 0.41 mm1
c = 15.205 (5) ÅT = 293 K
β = 110.272 (8)°Plate, light-pink
V = 1411.2 (8) Å30.39 × 0.21 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2905 independent reflections
Radiation source: fine-focus sealed tube1572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 16.1952 pixels mm-1θmax = 26.5°, θmin = 1.6°
ω scansh = 1718
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 88
Tmin = 0.857, Tmax = 0.992l = 1719
8647 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0511P)2]
where P = (Fo2 + 2Fc2)/3
2905 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H12ClN3SV = 1411.2 (8) Å3
Mr = 289.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.082 (5) ŵ = 0.41 mm1
b = 6.560 (2) ÅT = 293 K
c = 15.205 (5) Å0.39 × 0.21 × 0.02 mm
β = 110.272 (8)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2905 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1572 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.992Rint = 0.080
8647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0682 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.32 e Å3
2905 reflectionsΔρmin = 0.21 e Å3
178 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89088 (7)1.20521 (16)0.14891 (8)0.0759 (4)
S10.43050 (7)0.03791 (15)0.10962 (7)0.0525 (3)
N10.4748 (2)0.3287 (5)0.1918 (2)0.0506 (8)
H1n0.503 (2)0.441 (3)0.192 (3)0.061*
N20.5408 (2)0.2474 (4)0.0834 (2)0.0440 (8)
H2n0.548 (2)0.170 (4)0.0405 (18)0.053*
N30.58808 (19)0.4293 (4)0.1032 (2)0.0420 (7)
C10.4240 (2)0.3118 (6)0.2544 (3)0.0466 (9)
C20.4352 (3)0.1467 (6)0.3130 (3)0.0602 (11)
H20.47430.03950.30970.072*
C30.3891 (3)0.1397 (7)0.3761 (3)0.0720 (13)
H30.39720.02840.41590.086*
C40.3307 (3)0.2969 (8)0.3807 (3)0.0710 (13)
H40.29920.29180.42350.085*
C50.3189 (3)0.4607 (8)0.3223 (4)0.0758 (13)
H50.27850.56610.32440.091*
C60.3670 (3)0.4695 (6)0.2603 (3)0.0632 (11)
H60.36070.58330.22220.076*
C70.4841 (2)0.1899 (5)0.1310 (2)0.0409 (8)
C80.6458 (2)0.4670 (5)0.0611 (3)0.0433 (9)
H80.65240.37380.01770.052*
C90.7018 (2)0.6534 (5)0.0794 (2)0.0396 (8)
C100.6886 (2)0.8062 (5)0.1361 (2)0.0440 (9)
H100.64020.79430.16050.053*
C110.7458 (2)0.9755 (6)0.1570 (2)0.0497 (10)
H110.73661.07730.19550.060*
C120.8168 (2)0.9922 (5)0.1201 (3)0.0476 (9)
C130.8311 (3)0.8459 (6)0.0628 (3)0.0549 (11)
H130.87910.85990.03800.066*
C140.7732 (2)0.6764 (6)0.0421 (3)0.0529 (10)
H140.78210.57620.00270.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0720 (7)0.0538 (7)0.0900 (9)0.0255 (5)0.0129 (6)0.0056 (6)
S10.0613 (6)0.0469 (6)0.0554 (6)0.0150 (5)0.0281 (5)0.0079 (5)
N10.056 (2)0.045 (2)0.062 (2)0.0107 (15)0.0344 (17)0.0113 (18)
N20.0534 (18)0.0379 (19)0.048 (2)0.0114 (14)0.0273 (16)0.0095 (14)
N30.0434 (16)0.0386 (18)0.0456 (18)0.0051 (14)0.0173 (15)0.0023 (14)
C10.042 (2)0.050 (2)0.050 (2)0.0068 (18)0.0194 (18)0.011 (2)
C20.068 (3)0.061 (3)0.060 (3)0.009 (2)0.032 (2)0.004 (2)
C30.095 (3)0.072 (3)0.061 (3)0.001 (3)0.043 (3)0.009 (2)
C40.073 (3)0.092 (4)0.061 (3)0.012 (3)0.040 (2)0.012 (3)
C50.077 (3)0.082 (4)0.082 (3)0.017 (3)0.045 (3)0.011 (3)
C60.073 (3)0.058 (3)0.065 (3)0.006 (2)0.032 (2)0.005 (2)
C70.040 (2)0.043 (2)0.041 (2)0.0024 (16)0.0163 (17)0.0000 (18)
C80.050 (2)0.040 (2)0.047 (2)0.0006 (18)0.0249 (18)0.0053 (18)
C90.044 (2)0.035 (2)0.041 (2)0.0015 (16)0.0162 (17)0.0026 (17)
C100.044 (2)0.044 (2)0.046 (2)0.0034 (17)0.0181 (18)0.0005 (19)
C110.058 (2)0.047 (2)0.042 (2)0.0007 (19)0.0145 (19)0.0001 (19)
C120.047 (2)0.037 (2)0.052 (2)0.0047 (17)0.0082 (19)0.0098 (18)
C130.053 (2)0.049 (3)0.073 (3)0.0016 (19)0.035 (2)0.014 (2)
C140.062 (3)0.041 (2)0.065 (3)0.0015 (18)0.034 (2)0.002 (2)
Geometric parameters (Å, º) top
Cl1—C121.748 (4)C4—H40.9300
S1—C71.676 (4)C5—C61.374 (5)
N1—C71.339 (4)C5—H50.9300
N1—C11.419 (4)C6—H60.9300
N1—H1n0.853 (10)C8—C91.457 (4)
N2—C71.352 (4)C8—H80.9300
N2—N31.369 (4)C9—C101.381 (4)
N2—H2n0.863 (10)C9—C141.387 (4)
N3—C81.271 (4)C10—C111.374 (4)
C1—C61.368 (5)C10—H100.9300
C1—C21.375 (5)C11—C121.375 (5)
C2—C31.366 (5)C11—H110.9300
C2—H20.9300C12—C131.363 (5)
C3—C41.374 (6)C13—C141.381 (5)
C3—H30.9300C13—H130.9300
C4—C51.366 (6)C14—H140.9300
C7—N1—C1128.3 (3)N1—C7—N2114.6 (3)
C7—N1—H1n114 (3)N1—C7—S1125.6 (3)
C1—N1—H1n117 (3)N2—C7—S1119.8 (3)
C7—N2—N3120.2 (3)N3—C8—C9121.4 (3)
C7—N2—H2n121 (2)N3—C8—H8119.3
N3—N2—H2n119 (2)C9—C8—H8119.3
C8—N3—N2117.1 (3)C10—C9—C14118.4 (3)
C6—C1—C2119.5 (4)C10—C9—C8121.9 (3)
C6—C1—N1118.9 (4)C14—C9—C8119.6 (3)
C2—C1—N1121.5 (3)C11—C10—C9121.1 (3)
C3—C2—C1120.2 (4)C11—C10—H10119.5
C3—C2—H2119.9C9—C10—H10119.5
C1—C2—H2119.9C10—C11—C12119.0 (4)
C2—C3—C4120.1 (4)C10—C11—H11120.5
C2—C3—H3119.9C12—C11—H11120.5
C4—C3—H3119.9C13—C12—C11121.5 (3)
C5—C4—C3119.9 (4)C13—C12—Cl1119.6 (3)
C5—C4—H4120.0C11—C12—Cl1118.8 (3)
C3—C4—H4120.0C12—C13—C14119.0 (3)
C4—C5—C6119.9 (4)C12—C13—H13120.5
C4—C5—H5120.1C14—C13—H13120.5
C6—C5—H5120.1C13—C14—C9120.9 (4)
C1—C6—C5120.4 (4)C13—C14—H14119.5
C1—C6—H6119.8C9—C14—H14119.5
C5—C6—H6119.8
C7—N2—N3—C8174.7 (3)N3—N2—C7—S1177.2 (2)
C7—N1—C1—C6134.1 (4)N2—N3—C8—C9178.1 (3)
C7—N1—C1—C249.9 (5)N3—C8—C9—C106.3 (5)
C6—C1—C2—C30.5 (6)N3—C8—C9—C14171.1 (3)
N1—C1—C2—C3176.5 (4)C14—C9—C10—C111.3 (5)
C1—C2—C3—C40.5 (6)C8—C9—C10—C11176.1 (3)
C2—C3—C4—C50.2 (7)C9—C10—C11—C120.4 (5)
C3—C4—C5—C61.2 (7)C10—C11—C12—C130.6 (5)
C2—C1—C6—C52.0 (6)C10—C11—C12—Cl1178.6 (3)
N1—C1—C6—C5178.1 (4)C11—C12—C13—C140.5 (6)
C4—C5—C6—C12.3 (6)Cl1—C12—C13—C14178.7 (3)
C1—N1—C7—N2177.2 (3)C12—C13—C14—C90.5 (6)
C1—N1—C7—S14.1 (5)C10—C9—C14—C131.3 (5)
N3—N2—C7—N14.1 (4)C8—C9—C14—C13176.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···N30.85 (2)2.16 (4)2.601 (4)112 (3)
N2—H2n···S1i0.86 (3)2.57 (3)3.401 (3)164 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12ClN3S
Mr289.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.082 (5), 6.560 (2), 15.205 (5)
β (°) 110.272 (8)
V3)1411.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.39 × 0.21 × 0.02
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.857, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
8647, 2905, 1572
Rint0.080
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.137, 1.00
No. of reflections2905
No. of parameters178
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···N30.85 (2)2.16 (4)2.601 (4)112 (3)
N2—H2n···S1i0.86 (3)2.57 (3)3.401 (3)164 (2)
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: farina@ukm.my.

Acknowledgements

We thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-06-FRGS112–2009 and UKM-GUP-NBT-08–27–112.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationCunha, S., Macedo Junior, F. C. M., Costa, G. A. N., Rodrigues Junior, M. T., Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sa, F. P. (2007). Monatsh. Chem. 138, 511–516.  CrossRef CAS
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationKayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824–o825.  Web of Science CSD CrossRef IUCr Journals
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds