organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isonicotino­nitrile–4-methyl­benzoic acid (1/1)

aSchool of Biological and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
*Correspondence e-mail: cxwchem@yahoo.com.cn

(Received 16 May 2011; accepted 25 May 2011; online 28 May 2011)

The title structure, C6H4N2·C8H8O2, is built up from an assembly of isonicotinonitrile and 4-methyl­benzoic acid mol­ecules and may be regarded as a co-crystal. The two planar mol­ecules [r.m.s. deviations of 0.002 (6) and 0.0028 (11) Å, respectively] are linked by O—H⋯N and C—H⋯O hydrogen bonds. They are nearly coplanar and only twisted from each other by a dihedral angle of 2.48 (6)°. In the crystal, the components are inter­connected by slipped ππ stacking [centroid–centroid distance = 3.6797 (11), slippage = 1.304 Å] and inter­molecular C—H⋯N inter­actions.

Related literature

For the structures of related derivatives, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]); Dai & Fu (2008a[Dai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.],b[Dai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.]). For the graph-set theory, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4N2·C8H8O2

  • Mr = 240.26

  • Monoclinic, C 2/c

  • a = 7.5368 (15) Å

  • b = 13.049 (3) Å

  • c = 24.749 (5) Å

  • β = 94.20 (3)°

  • V = 2427.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.89, Tmax = 1.00

  • 11659 measured reflections

  • 2752 independent reflections

  • 2416 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.09

  • 2752 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.6850 (15) 175
C1—H1A⋯O2 0.93 2.51 3.1858 (18) 130
C4—H4A⋯N2i 0.93 2.60 3.3700 (18) 141
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amino derivatives have found wide range of applications in material science, such as magnetic, fluorescent and dielectric behaviors. And there has been an increased interest in the preparation of amino co-crystal compounds (Aminabhavi et al., 1986; Dai & Fu 2008a; Dai & Fu 2008b; Fu, et al. 2009). As an extension on the structural characterization, we report here the crystal structure of the title compound isonicotinonitrile 4-methylbenzoic acid.

The asymmetric unit contains an organic isonicotinonitrile molecule and a 4-methylbenzoic acid organic molecule which are linked by a strong O—H···N and a weak C-H···O hydrogen bonds forming a C22(7) ring ( Etter et al., 1990; Bernstein et al., 1995)(Fig. 1). The benzene and pyridine rings are nearly coplanar and only twisted from each other by a dihedral angle of 2.48 (6)°. The geometric parameters of both the organic molecules are within the normal range.

There are intramolecular C-H···N hydrogen bonds and slippest π-π stacking which stabilize the packing (Tab.1 & 2).

Related literature top

For the structures of related derivatives, see: Fu et al. (2009); Aminabhavi et al. (1986); Dai & Fu (2008a,b). For the graph-set theory, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

isonicotinonitrile and 4-methylbenzoic acid were obtained commercially from Alfa Aesar. The two organoc compounds were solved in the solution (ethanol/water). Colourless block-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol/water (2:1 v/v) solution.

Refinement top

All the H atoms attached to C atoms were located into the idealized positions and treated as riding with C–H = 0.93 Å (aromatic) and 0.96 Å (methyl) with Uiso(H)=1.2Ueq(aromatic) and Uiso(H)=1.5Ueq(methyl). The positional parameters of the H atom (O1) was refined freely. In the last cycles of the refinement, it was treated as riding with the H1—O1 = 0.82 (2)Å) and Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and the H bonds are shown as dashed lines.
Isonicotinonitrile–4-methylbenzoic acid (1/1) top
Crystal data top
C6H4N2·C8H8O2F(000) = 1008
Mr = 240.26Dx = 1.315 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3221 reflections
a = 7.5368 (15) Åθ = 3.1–27.5°
b = 13.049 (3) ŵ = 0.09 mm1
c = 24.749 (5) ÅT = 298 K
β = 94.20 (3)°Block, colourless
V = 2427.5 (8) Å30.40 × 0.30 × 0.20 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
2752 independent reflections
Radiation source: fine-focus sealed tube2416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 1.7°
profile data from ϕ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.89, Tmax = 1.00l = 3232
11659 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.8361P]
where P = (Fo2 + 2Fc2)/3
2752 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C6H4N2·C8H8O2V = 2427.5 (8) Å3
Mr = 240.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 7.5368 (15) ŵ = 0.09 mm1
b = 13.049 (3) ÅT = 298 K
c = 24.749 (5) Å0.40 × 0.30 × 0.20 mm
β = 94.20 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2752 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2416 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 1.00Rint = 0.033
11659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.09Δρmax = 0.28 e Å3
2752 reflectionsΔρmin = 0.18 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.43937 (13)0.09948 (8)0.42051 (4)0.0221 (2)
N20.17678 (14)0.10802 (9)0.29801 (4)0.0277 (3)
C10.28921 (16)0.13083 (9)0.44087 (5)0.0230 (3)
H1A0.29430.15230.47680.028*
C20.12616 (16)0.13288 (9)0.41101 (5)0.0234 (3)
H2A0.02380.15470.42640.028*
C30.12108 (15)0.10120 (8)0.35729 (5)0.0197 (3)
C40.27629 (16)0.06891 (10)0.33537 (5)0.0246 (3)
H4A0.27540.04730.29950.030*
C50.43222 (16)0.06995 (10)0.36861 (5)0.0256 (3)
H5A0.53690.04910.35420.031*
C60.04509 (16)0.10367 (9)0.32417 (5)0.0224 (3)
O10.73800 (11)0.10321 (7)0.48667 (3)0.0269 (2)
H10.64810.10580.46590.040*
O20.55361 (11)0.16298 (7)0.54594 (4)0.0289 (2)
C71.30335 (18)0.15462 (10)0.69515 (5)0.0299 (3)
H7A1.41220.16180.67760.045*
H7B1.30660.09230.71580.045*
H7C1.28980.21180.71890.045*
C81.14836 (17)0.15140 (9)0.65291 (5)0.0234 (3)
C91.16972 (16)0.11425 (9)0.60095 (5)0.0244 (3)
H9A1.28150.09260.59200.029*
C101.02690 (16)0.10904 (9)0.56240 (5)0.0227 (3)
H10A1.04320.08350.52800.027*
C110.85908 (15)0.14193 (8)0.57500 (5)0.0195 (3)
C120.83696 (17)0.17952 (9)0.62657 (5)0.0248 (3)
H12A0.72540.20160.63540.030*
C130.98023 (18)0.18425 (10)0.66492 (5)0.0272 (3)
H13A0.96360.20980.69930.033*
C140.70140 (15)0.13749 (9)0.53480 (5)0.0203 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0212 (5)0.0233 (5)0.0215 (5)0.0027 (4)0.0000 (4)0.0016 (4)
N20.0229 (5)0.0348 (6)0.0251 (5)0.0010 (4)0.0008 (4)0.0017 (4)
C10.0243 (6)0.0241 (6)0.0205 (5)0.0011 (4)0.0001 (4)0.0021 (4)
C20.0216 (6)0.0256 (6)0.0229 (6)0.0004 (4)0.0010 (4)0.0021 (4)
C30.0201 (6)0.0174 (5)0.0212 (6)0.0025 (4)0.0009 (4)0.0014 (4)
C40.0252 (6)0.0292 (6)0.0194 (5)0.0010 (5)0.0008 (4)0.0019 (4)
C50.0205 (6)0.0330 (7)0.0234 (6)0.0017 (5)0.0027 (4)0.0007 (5)
C60.0233 (6)0.0231 (6)0.0210 (5)0.0005 (4)0.0020 (5)0.0015 (4)
O10.0188 (4)0.0422 (5)0.0194 (4)0.0009 (4)0.0011 (3)0.0046 (4)
O20.0200 (5)0.0370 (5)0.0295 (5)0.0029 (4)0.0000 (3)0.0074 (4)
C70.0301 (7)0.0302 (7)0.0279 (6)0.0046 (5)0.0085 (5)0.0007 (5)
C80.0263 (6)0.0208 (6)0.0223 (6)0.0048 (4)0.0037 (5)0.0030 (4)
C90.0196 (6)0.0288 (6)0.0249 (6)0.0008 (4)0.0015 (4)0.0019 (5)
C100.0217 (6)0.0275 (6)0.0189 (5)0.0023 (5)0.0019 (4)0.0001 (4)
C110.0208 (6)0.0177 (5)0.0198 (5)0.0027 (4)0.0009 (4)0.0010 (4)
C120.0234 (6)0.0259 (6)0.0253 (6)0.0006 (5)0.0024 (5)0.0032 (5)
C130.0320 (7)0.0289 (6)0.0205 (5)0.0012 (5)0.0002 (5)0.0044 (5)
C140.0205 (6)0.0186 (5)0.0220 (6)0.0024 (4)0.0018 (4)0.0003 (4)
Geometric parameters (Å, º) top
N1—C11.3362 (16)C7—C81.5100 (17)
N1—C51.3384 (16)C7—H7A0.9600
N2—C61.1461 (16)C7—H7B0.9600
C1—C21.3871 (17)C7—H7C0.9600
C1—H1A0.9300C8—C131.3903 (18)
C2—C31.3903 (16)C8—C91.3946 (17)
C2—H2A0.9300C9—C101.3866 (17)
C3—C41.3903 (17)C9—H9A0.9300
C3—C61.4459 (17)C10—C111.3925 (17)
C4—C51.3844 (17)C10—H10A0.9300
C4—H4A0.9300C11—C121.3886 (16)
C5—H5A0.9300C11—C141.4942 (16)
O1—C141.3202 (14)C12—C131.3858 (18)
O1—H10.8200C12—H12A0.9300
O2—C141.2134 (15)C13—H13A0.9300
C1—N1—C5118.32 (10)H7B—C7—H7C109.5
N1—C1—C2123.14 (11)C13—C8—C9118.23 (11)
N1—C1—H1A118.4C13—C8—C7120.95 (11)
C2—C1—H1A118.4C9—C8—C7120.82 (11)
C1—C2—C3117.72 (11)C10—C9—C8121.01 (11)
C1—C2—H2A121.1C10—C9—H9A119.5
C3—C2—H2A121.1C8—C9—H9A119.5
C4—C3—C2119.88 (11)C9—C10—C11120.19 (11)
C4—C3—C6120.28 (10)C9—C10—H10A119.9
C2—C3—C6119.83 (11)C11—C10—H10A119.9
C5—C4—C3117.85 (11)C12—C11—C10119.13 (11)
C5—C4—H4A121.1C12—C11—C14118.85 (11)
C3—C4—H4A121.1C10—C11—C14122.01 (10)
N1—C5—C4123.09 (11)C13—C12—C11120.35 (11)
N1—C5—H5A118.5C13—C12—H12A119.8
C4—C5—H5A118.5C11—C12—H12A119.8
N2—C6—C3178.44 (13)C12—C13—C8121.09 (11)
C14—O1—H1109.5C12—C13—H13A119.5
C8—C7—H7A109.5C8—C13—H13A119.5
C8—C7—H7B109.5O2—C14—O1123.63 (11)
H7A—C7—H7B109.5O2—C14—C11122.45 (10)
C8—C7—H7C109.5O1—C14—C11113.91 (10)
H7A—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.6850 (15)175
C1—H1A···O20.932.513.1858 (18)130
C4—H4A···N2i0.932.603.3700 (18)141
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H4N2·C8H8O2
Mr240.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)7.5368 (15), 13.049 (3), 24.749 (5)
β (°) 94.20 (3)
V3)2427.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.89, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
11659, 2752, 2416
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.09
No. of reflections2752
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.6850 (15)175
C1—H1A···O20.932.513.1858 (18)130
C4—H4A···N2i0.932.603.3700 (18)141
Symmetry code: (i) x, y, z+1/2.
Table 2 π-π stacking interactions (Å,°) top
Cg1 is the centroid of the C8—C13 ring.

Cg2 is the centroid of the N1—C5 ring
CgICgJCgI···CgJaCgI···P(J)bCgJ···P(I)cSlippage
Cg1Cg2ii3.6797 (11)3.4403.4431.304
Symmetry codes: (ii)3/2-x,1/2-y,1-z Notes:

a : Distance between centroids

b : Perpendicular distance of CgI on ring plan J

c : Perpendicular distance of CgJ on ring plan I

Slippage = vertical displacement between ring centroids.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology, China.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.  CrossRef CAS Web of Science
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
First citationDai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.  Web of Science CSD CrossRef IUCr Journals
First citationDai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.  Web of Science CSD CrossRef IUCr Journals
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.  Web of Science CSD CrossRef CAS
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds