organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1409-o1410

2-Amino-3-carb­­oxy­pyrazin-1-ium di­hydrogen phosphate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr

(Received 2 May 2011; accepted 9 May 2011; online 14 May 2011)

In the crystal structure of the title compound, C5H6N3O2+·H2PO4, the dihydrogen phosphate anions are linked through short O—H⋯O hydrogen bonds, forming infinite double chains running parallel to the b axis. Centrosymetric N—H⋯O hydrogen-bonded cationic dimers form bridges between these chains by means of inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, leading to a two-dimensional network parallel to (100) in which R33(12), R43(10) R22(8) and C(4) graph-set motifs are generated. Weak inter­molecular C—H⋯O hydrogen bonds connect these layers, forming a three-dimensional network.

Related literature

For hybrid compounds based on N-heterocycles, see: Akriche & Rzaigui (2007[Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.]); Berrah et al. (2011a[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525-o526.],b[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677-o678.],c[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o953-o954.]); Ouakkaf et al. (2011[Ouakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171-o1172.]). For related dihydrogenphosphte compounds, see: Lin et al. (2009[Lin, C.-H., Liu, N.-S. & Jian, F.-F. (2009). Acta Cryst. E65, o2639.]); Shao et al. (2010[Shao, Z.-D., Jiang, X., Lan, S.-M., Di, W.-J. & Liang, Y.-X. (2010). Acta Cryst. E66, o1757-o1758.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N3O2+·H2PO4

  • Mr = 237.11

  • Monoclinic, P 21 /c

  • a = 8.6076 (5) Å

  • b = 4.6703 (3) Å

  • c = 21.9431 (13) Å

  • β = 95.573 (2)°

  • V = 877.94 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 150 K

  • 0.45 × 0.06 × 0.04 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.898, Tmax = 0.987

  • 7993 measured reflections

  • 2004 independent reflections

  • 1781 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.079

  • S = 1.04

  • 2004 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O14 0.88 1.94 2.8171 (17) 171
N1—H1B⋯O9 0.88 2.09 2.7275 (17) 128
N1—H1B⋯O9i 0.88 2.37 3.0640 (19) 136
N3—H3⋯O11 0.88 1.79 2.6690 (16) 173
O10—H10⋯O13ii 0.84 1.83 2.6591 (16) 169
O12—H12⋯O11iii 0.84 1.72 2.5386 (14) 166
O13—H13⋯O14iv 0.84 1.64 2.4634 (16) 164
C4—H4⋯O11v 0.95 2.43 3.3377 (19) 160
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In continuation of our search for new hybrids based on protonated N-heterocyclic compounds and inorganic acids we have prepared the title compound. Our recent investigation in this field has revealed the ability of N-heterocyclic derivatives to generate original networks stabilized by hydrogen bonds and has shown how anion substitution may influence the hydrogen-bonding patterns (Berrah et al., 2011a,b,c; Ouakkaf et al., 2011).

The asymmetric unit of the title conpound compound contains one 2-amino-3-carboxypyrazin-1-ium cation and one dihydrogen phosphate anion (Fig. 1). Both entities display geometry similar to that reported in related compounds (Akriche & Rzaigui 2007; Berrah et al., 2011b; Shao et al., 2010). dihydrogen phosphate anions linked through strong O—H···O hydrogen bonds (Table 1), form double infinite chains running parallel to the b axis (Fig. 2). Similar chains were previously observed in related compounds (Akriche & Rzaigui 2007; Lin et al., 2009). 2-Amino-3-carboxypyrazin-1-ium centrosymetric dimers form bridges between these chains by means of N—H···O and O—H···O hydrogen bonds (Fig. 3) leading to a two-dimensional network (Fig. 4) where R33(12), R34(10), R22(8) and C(4) graph-set motifs are generated (Fig. 2 and Fig. 3)(Etter et al., 1990; Bernstein et al., 1995). Further stabilization is provided by intermolecular C—H···O contacts.

Related literature top

For hybrid compounds based on N-heterocycles, see: Akriche & Rzaigui (2007); Berrah et al. (2011a,b,c); Ouakkaf et al. (2011). For related dihydrogenphosphte compounds, see: Lin et al. (2009); Shao et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound was synthesized by reacting 3-amino-pyrazine-2-carboxylic acid with phosphoricic acid in a solution of equal volume of H2O and CH3OH. Slow evaporation leads to well crystallized colourless needles.

Refinement top

H atoms were located in Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.95 Å, O—H = 0.84 Å and N—H = 0.88 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure viewed along [001] showing infinite double chains. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view parallel to (010) showing cationic dimers and how they link double infinite anionic chains. C—H···O contacts have been omitted for clarity.
[Figure 4] Fig. 4. The two-dimensional packing. Hydrogen bonds are shown as dashed lines.
2-Amino-3-carboxypyrazin-1-ium dihydrogen phosphate top
Crystal data top
C5H6N3O2+·H2PO4F(000) = 488
Mr = 237.11Dx = 1.794 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4062 reflections
a = 8.6076 (5) Åθ = 3.2–27.5°
b = 4.6703 (3) ŵ = 0.33 mm1
c = 21.9431 (13) ÅT = 150 K
β = 95.573 (2)°Needle, colourless
V = 877.94 (9) Å30.45 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 117
Tmin = 0.898, Tmax = 0.987k = 66
7993 measured reflectionsl = 2828
2004 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.6558P]
where P = (Fo2 + 2Fc2)/3
2004 reflections(Δ/σ)max = 0.001
139 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C5H6N3O2+·H2PO4V = 877.94 (9) Å3
Mr = 237.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6076 (5) ŵ = 0.33 mm1
b = 4.6703 (3) ÅT = 150 K
c = 21.9431 (13) Å0.45 × 0.06 × 0.04 mm
β = 95.573 (2)°
Data collection top
Bruker APEXII
diffractometer
2004 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1781 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.987Rint = 0.025
7993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
2004 reflectionsΔρmin = 0.39 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.86142 (15)0.8016 (3)0.90992 (6)0.0173 (3)
H1A0.87330.87410.87360.021*
H1B0.91910.86450.94250.021*
C20.75718 (17)0.5988 (3)0.91547 (6)0.0137 (3)
N30.66953 (15)0.5047 (3)0.86483 (5)0.0149 (3)
H30.68340.5830.82930.018*
C40.56229 (17)0.2967 (3)0.86666 (7)0.0165 (3)
H40.50450.23390.830.02*
C50.53675 (17)0.1756 (3)0.92166 (7)0.0171 (3)
H50.46080.02880.9230.02*
N60.61838 (15)0.2626 (3)0.97404 (6)0.0166 (3)
C70.72487 (17)0.4646 (3)0.97204 (6)0.0142 (3)
C80.81279 (17)0.5559 (3)1.03115 (7)0.0155 (3)
O90.91059 (13)0.7446 (2)1.03400 (5)0.0214 (3)
O100.77252 (13)0.4096 (3)1.07821 (5)0.0212 (3)
H100.82190.47121.11040.032*
P10.79097 (4)0.97152 (8)0.740127 (16)0.01125 (11)
O110.70388 (12)0.7004 (2)0.75265 (5)0.0161 (2)
O120.66950 (12)1.1937 (2)0.71167 (5)0.0162 (2)
H120.6961.35880.72380.024*
O130.89962 (12)0.9251 (2)0.68787 (5)0.0183 (2)
H130.96970.80650.69940.027*
O140.88101 (12)1.0854 (2)0.79764 (5)0.0158 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0199 (6)0.0194 (7)0.0125 (6)0.0029 (5)0.0013 (5)0.0017 (5)
C20.0139 (7)0.0139 (7)0.0134 (6)0.0041 (5)0.0019 (5)0.0008 (5)
N30.0177 (6)0.0157 (6)0.0113 (6)0.0025 (5)0.0013 (5)0.0010 (5)
C40.0150 (7)0.0166 (7)0.0173 (7)0.0029 (6)0.0014 (6)0.0021 (6)
C50.0141 (7)0.0177 (7)0.0193 (7)0.0006 (6)0.0015 (6)0.0016 (6)
N60.0160 (6)0.0182 (6)0.0158 (6)0.0017 (5)0.0027 (5)0.0000 (5)
C70.0144 (7)0.0160 (7)0.0123 (6)0.0027 (5)0.0020 (5)0.0003 (5)
C80.0160 (7)0.0172 (7)0.0135 (7)0.0028 (6)0.0023 (5)0.0006 (5)
O90.0245 (6)0.0223 (6)0.0168 (5)0.0050 (5)0.0003 (4)0.0013 (4)
O100.0233 (6)0.0296 (6)0.0106 (5)0.0056 (5)0.0011 (4)0.0010 (4)
P10.01218 (19)0.01066 (18)0.01087 (18)0.00067 (13)0.00093 (13)0.00036 (13)
O110.0213 (5)0.0112 (5)0.0156 (5)0.0021 (4)0.0010 (4)0.0006 (4)
O120.0158 (5)0.0107 (5)0.0212 (5)0.0021 (4)0.0025 (4)0.0026 (4)
O130.0182 (5)0.0239 (6)0.0132 (5)0.0094 (4)0.0034 (4)0.0031 (4)
O140.0168 (5)0.0181 (5)0.0121 (5)0.0043 (4)0.0004 (4)0.0003 (4)
Geometric parameters (Å, º) top
N1—C21.319 (2)N6—C71.319 (2)
N1—H1A0.88C7—C81.4987 (19)
N1—H1B0.88C8—O91.2161 (19)
C2—N31.3543 (18)C8—O101.3127 (18)
C2—C71.442 (2)O10—H100.84
N3—C41.343 (2)P1—O111.5101 (11)
N3—H30.88P1—O141.5120 (10)
C4—C51.370 (2)P1—O121.5597 (11)
C4—H40.95P1—O131.5636 (11)
C5—N61.3503 (19)O12—H120.84
C5—H50.95O13—H130.84
C2—N1—H1A120N6—C7—C2122.16 (13)
C2—N1—H1B120N6—C7—C8117.96 (13)
H1A—N1—H1B120C2—C7—C8119.88 (13)
N1—C2—N3119.16 (13)O9—C8—O10124.84 (14)
N1—C2—C7125.57 (13)O9—C8—C7122.65 (14)
N3—C2—C7115.26 (13)O10—C8—C7112.51 (13)
C4—N3—C2122.68 (13)C8—O10—H10109.5
C4—N3—H3118.7O11—P1—O14111.49 (6)
C2—N3—H3118.7O11—P1—O12107.77 (6)
N3—C4—C5119.62 (14)O14—P1—O12111.69 (6)
N3—C4—H4120.2O11—P1—O13111.11 (6)
C5—C4—H4120.2O14—P1—O13111.48 (6)
N6—C5—C4120.73 (14)O12—P1—O13102.94 (6)
N6—C5—H5119.6P1—O12—H12109.5
C4—C5—H5119.6P1—O13—H13109.5
C7—N6—C5119.53 (13)
N1—C2—N3—C4179.23 (13)N3—C2—C7—N60.6 (2)
C7—C2—N3—C41.4 (2)N1—C2—C7—C80.5 (2)
C2—N3—C4—C51.2 (2)N3—C2—C7—C8178.86 (12)
N3—C4—C5—N60.1 (2)N6—C7—C8—O9178.37 (14)
C4—C5—N6—C70.6 (2)C2—C7—C8—O91.1 (2)
C5—N6—C7—C20.4 (2)N6—C7—C8—O101.9 (2)
C5—N6—C7—C8179.86 (13)C2—C7—C8—O10178.58 (13)
N1—C2—C7—N6179.93 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O140.881.942.8171 (17)171
N1—H1B···O90.882.092.7275 (17)128
N1—H1B···O9i0.882.373.0640 (19)136
N3—H3···O110.881.792.6690 (16)173
O10—H10···O13ii0.841.832.6591 (16)169
O12—H12···O11iii0.841.722.5386 (14)166
O13—H13···O14iv0.841.642.4634 (16)164
C4—H4···O11v0.952.433.3377 (19)160
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+2, y1/2, z+3/2; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC5H6N3O2+·H2PO4
Mr237.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.6076 (5), 4.6703 (3), 21.9431 (13)
β (°) 95.573 (2)
V3)877.94 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.45 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.898, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7993, 2004, 1781
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.04
No. of reflections2004
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.39

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O140.881.942.8171 (17)171
N1—H1B···O90.882.092.7275 (17)128
N1—H1B···O9i0.882.373.0640 (19)136
N3—H3···O110.881.792.6690 (16)173
O10—H10···O13ii0.841.832.6591 (16)169
O12—H12···O11iii0.841.722.5386 (14)166
O13—H13···O14iv0.841.642.4634 (16)164
C4—H4···O11v0.952.433.3377 (19)160
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+2, y1/2, z+3/2; (v) x+1, y1/2, z+3/2.
 

Footnotes

Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.

Acknowledgements

We are grateful to the LCATM laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.

References

First citationAkriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525–o526.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677–o678.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o953–o954.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLin, C.-H., Liu, N.-S. & Jian, F.-F. (2009). Acta Cryst. E65, o2639.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171–o1172.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShao, Z.-D., Jiang, X., Lan, S.-M., Di, W.-J. & Liang, Y.-X. (2010). Acta Cryst. E66, o1757–o1758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1409-o1410
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds