organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed, Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des, Sciences, Université Mohammed V-Agdal, Av. Ibn Battouta, BP 1014, Rabat, Morocco, cDepartamento de Quimica Inorganica & Organica, ESTCE, Universitat Jaume I, E-12080 Castellon, Spain, dInstitut für Anorganische Chemie, J.W. von Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main. Germany, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: ouzidan@yahoo.fr

(Received 13 June 2011; accepted 22 June 2011; online 25 June 2011)

The fused five- and six-membered rings in the title compound, C14H12N2O, are essentially planar, the largest deviation from the mean plane being 0.023 (2) Å. The dihedral angle between the benzimidazole mean plane and the phenyl ring is 68.50 (6)°. In the crystal, each mol­ecule is linked to its symmetry equivalent created by a crystallographic inversion center by pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the biological activity of benzimidazole derivatives, see: Gravatt et al. (1994[Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338-4345.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893—930.]); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992-998.]); Roth et al. (1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]). For related structures, see: Ouzidan et al. (2011a[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.],b[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362-o363.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O

  • Mr = 224.26

  • Monoclinic, P 21 /n

  • a = 13.8652 (7) Å

  • b = 5.7975 (3) Å

  • c = 14.9337 (7) Å

  • β = 109.5346 (12)°

  • V = 1131.33 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.44 × 0.28 mm

Data collection
  • Bruker CCD three-circle diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.977

  • 9007 measured reflections

  • 3392 independent reflections

  • 2514 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.05

  • 3392 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.03 2.845 (1) 158
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals, anti-cancers, (Gravatt et al. 1994; Horton et al. 2003; Kim et al. 1996; Roth et al. 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we report in this paper the synthesis of a new benzimidazol-2-one derivative by action of benzyl chloride with 1H-benzimidazol-2-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish the title compound (Scheme 1).

The two fused five and six-membered rings are almost planar with the maximum deviation of 0.023 (2) Å from C2. The dihedral angle between the benzimidazole system and the phenyl ring is 68.50 (6)° (Fig.1). In the crystal structure each molecule is linked to its symmetry equivalent created by the crystallographic inversion center by N–H···O hydrogen bonds to form pseudo-dimers as shown in Fg.2.

Related literature top

For the biological activity of benzimidazole derivatives, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). For related structures, see: Ouzidan et al. (2011a,b).

Experimental top

To 1H-benzimidazol-2-one (0.2 g, 1.5 mmol), potassium carbonate (0.41 g, 3 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (15 ml) was added benzyl chloride (0.34 ml, 3 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from ethanol to give colorless crystals (yield: 12%).

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å, and 0.97 Å for aromatic and methylene H atoms, respectively, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radii.
[Figure 2] Fig. 2. : Formation of pseudo-dimers between two molecules by N–H···O hydrogen bonds (dashed lines).
1-Benzyl-1H-benzimidazol-2(3H)-one top
Crystal data top
C14H12N2OF(000) = 472
Mr = 224.26Dx = 1.317 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3392 reflections
a = 13.8652 (7) Åθ = 1.7–30.5°
b = 5.7975 (3) ŵ = 0.09 mm1
c = 14.9337 (7) ÅT = 298 K
β = 109.5346 (12)°Prism, colourless
V = 1131.33 (10) Å30.50 × 0.44 × 0.28 mm
Z = 4
Data collection top
Bruker CCD three-circle
diffractometer
3392 independent reflections
Radiation source: fine-focus sealed tube2514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 30.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1819
Tmin = 0.959, Tmax = 0.977k = 88
9007 measured reflectionsl = 1621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.1866P]
where P = (Fo2 + 2Fc2)/3
3392 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H12N2OV = 1131.33 (10) Å3
Mr = 224.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.8652 (7) ŵ = 0.09 mm1
b = 5.7975 (3) ÅT = 298 K
c = 14.9337 (7) Å0.50 × 0.44 × 0.28 mm
β = 109.5346 (12)°
Data collection top
Bruker CCD three-circle
diffractometer
3392 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2514 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.977Rint = 0.020
9007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3392 reflectionsΔρmin = 0.19 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59908 (7)0.79068 (16)0.53088 (6)0.0462 (2)
N10.46509 (7)0.82117 (17)0.38695 (7)0.0391 (2)
H10.43870.94970.39580.066 (5)*
C10.54932 (8)0.72077 (19)0.45072 (8)0.0354 (2)
N20.56888 (7)0.52373 (16)0.40851 (7)0.0350 (2)
C20.49440 (8)0.49698 (19)0.31953 (8)0.0343 (2)
C30.47930 (10)0.3259 (2)0.25181 (9)0.0429 (3)
H30.52320.20030.26110.050 (4)*
C40.39558 (11)0.3498 (3)0.16918 (9)0.0513 (3)
H40.38340.23820.12200.060 (4)*
C50.32981 (10)0.5368 (3)0.15565 (9)0.0510 (3)
H50.27450.54770.09950.058 (4)*
C60.34472 (10)0.7081 (2)0.22409 (9)0.0455 (3)
H60.30020.83260.21510.056 (4)*
C70.42820 (9)0.68586 (19)0.30576 (8)0.0357 (2)
C80.64791 (9)0.3581 (2)0.45689 (8)0.0378 (2)
H8A0.61730.20600.45130.044 (4)*
H8B0.67440.39680.52390.041 (3)*
C110.73601 (8)0.34906 (19)0.41875 (8)0.0354 (2)
C120.75053 (11)0.1565 (2)0.36992 (10)0.0491 (3)
H120.70480.03390.35910.061 (5)*
C130.83286 (13)0.1452 (3)0.33705 (12)0.0638 (4)
H130.84160.01600.30360.088 (6)*
C140.90122 (13)0.3235 (3)0.35368 (12)0.0659 (4)
H140.95690.31450.33240.085 (6)*
C150.88757 (11)0.5165 (3)0.40199 (12)0.0597 (4)
H150.93380.63820.41290.068 (5)*
C160.80491 (10)0.5294 (2)0.43437 (10)0.0459 (3)
H160.79580.66010.46680.054 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0430 (5)0.0475 (5)0.0452 (5)0.0005 (4)0.0110 (4)0.0138 (4)
N10.0386 (5)0.0356 (5)0.0443 (5)0.0044 (4)0.0155 (4)0.0033 (4)
C10.0336 (5)0.0348 (5)0.0411 (6)0.0025 (4)0.0171 (5)0.0040 (4)
N20.0330 (4)0.0349 (5)0.0367 (5)0.0019 (4)0.0114 (4)0.0035 (4)
C20.0326 (5)0.0368 (5)0.0347 (5)0.0011 (4)0.0130 (4)0.0000 (4)
C30.0447 (6)0.0405 (6)0.0429 (6)0.0018 (5)0.0137 (5)0.0065 (5)
C40.0515 (7)0.0566 (8)0.0422 (7)0.0042 (6)0.0109 (6)0.0116 (6)
C50.0412 (6)0.0656 (9)0.0404 (6)0.0013 (6)0.0060 (5)0.0005 (6)
C60.0381 (6)0.0500 (7)0.0479 (7)0.0064 (5)0.0134 (5)0.0065 (6)
C70.0346 (5)0.0364 (5)0.0395 (6)0.0003 (4)0.0167 (5)0.0006 (4)
C80.0389 (6)0.0371 (6)0.0384 (6)0.0039 (4)0.0141 (5)0.0041 (5)
C110.0356 (5)0.0365 (5)0.0327 (5)0.0070 (4)0.0094 (4)0.0053 (4)
C120.0516 (7)0.0422 (7)0.0547 (8)0.0073 (6)0.0195 (6)0.0022 (6)
C130.0697 (10)0.0637 (9)0.0675 (9)0.0226 (8)0.0354 (8)0.0002 (8)
C140.0551 (9)0.0814 (11)0.0728 (10)0.0221 (8)0.0367 (8)0.0184 (9)
C150.0445 (7)0.0656 (9)0.0710 (10)0.0033 (7)0.0221 (7)0.0141 (8)
C160.0446 (7)0.0432 (6)0.0499 (7)0.0009 (5)0.0158 (5)0.0008 (5)
Geometric parameters (Å, º) top
O1—C11.2332 (14)C6—H60.9300
N1—C11.3660 (15)C8—C111.5114 (15)
N1—C71.3901 (15)C8—H8A0.9700
N1—H10.8600C8—H8B0.9700
C1—N21.3749 (14)C11—C161.3824 (17)
N2—C21.3922 (14)C11—C121.3845 (17)
N2—C81.4546 (14)C12—C131.387 (2)
C2—C31.3815 (16)C12—H120.9300
C2—C71.3991 (15)C13—C141.368 (3)
C3—C41.3897 (19)C13—H130.9300
C3—H30.9300C14—C151.379 (2)
C4—C51.387 (2)C14—H140.9300
C4—H40.9300C15—C161.3869 (19)
C5—C61.3902 (19)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—C71.3783 (17)
C1—N1—C7110.31 (9)N1—C7—C2106.35 (10)
C1—N1—H1124.8N2—C8—C11113.90 (9)
C7—N1—H1124.8N2—C8—H8A108.8
O1—C1—N1127.38 (11)C11—C8—H8A108.8
O1—C1—N2125.88 (11)N2—C8—H8B108.8
N1—C1—N2106.74 (10)C11—C8—H8B108.8
C1—N2—C2109.46 (9)H8A—C8—H8B107.7
C1—N2—C8123.52 (10)C16—C11—C12119.00 (11)
C2—N2—C8126.56 (9)C16—C11—C8120.68 (11)
C3—C2—N2131.39 (10)C12—C11—C8120.30 (11)
C3—C2—C7121.52 (11)C11—C12—C13120.43 (14)
N2—C2—C7107.09 (9)C11—C12—H12119.8
C2—C3—C4117.10 (11)C13—C12—H12119.8
C2—C3—H3121.5C14—C13—C12120.16 (14)
C4—C3—H3121.5C14—C13—H13119.9
C5—C4—C3121.38 (12)C12—C13—H13119.9
C5—C4—H4119.3C13—C14—C15120.03 (14)
C3—C4—H4119.3C13—C14—H14120.0
C4—C5—C6121.48 (12)C15—C14—H14120.0
C4—C5—H5119.3C14—C15—C16120.02 (14)
C6—C5—H5119.3C14—C15—H15120.0
C7—C6—C5117.27 (11)C16—C15—H15120.0
C7—C6—H6121.4C11—C16—C15120.36 (13)
C5—C6—H6121.4C11—C16—H16119.8
C6—C7—N1132.40 (11)C15—C16—H16119.8
C6—C7—C2121.25 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.845 (1)158
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H12N2O
Mr224.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.8652 (7), 5.7975 (3), 14.9337 (7)
β (°) 109.5346 (12)
V3)1131.33 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.44 × 0.28
Data collection
DiffractometerBruker CCD three-circle
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
9007, 3392, 2514
Rint0.020
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.05
No. of reflections3392
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.845 (1)158
Symmetry code: (i) x+1, y+2, z+1.
 

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationGravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345.  CrossRef CAS PubMed Web of Science
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893—930.  CrossRef
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998.  CrossRef CAS PubMed Web of Science
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362–o363.  Web of Science CSD CrossRef CAS IUCr Journals
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds