organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5-Acetyl-2-hy­dr­oxy­phen­yl)ethanone

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Street 83, 100125 Tashkent, Uzbekistan
*Correspondence e-mail: samat_talipov@yahoo.com

(Received 4 May 2011; accepted 28 May 2011; online 11 June 2011)

The crystal structure of the title compound, C10H10O3, is characterized by classical intra­molecular hydrogen bonding. The hy­droxy group is disordered over two positions (77 and 23%). The crystal structure is stabilized via ππ [3.5986 (1) Å] and weak nonclassical C—H⋯O inter­actions [3.2797 (15) Å].

Related literature

For hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 29-123. Oxford University Press.]). For ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For the anti­fungal activity of the title compound, see: Prats et al. (2007[Prats, E., Galindo, J. C., Bazzalo, M. E., León, A., Macías, F. A., Rubiales, D. & Jorrín, J. V. (2007). J. Chem. Ecol. 33, 2245-2253.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O3

  • Mr = 178.18

  • Monoclinic, P 21 /c

  • a = 7.1134 (2) Å

  • b = 10.9260 (3) Å

  • c = 11.5291 (3) Å

  • β = 98.485 (2)°

  • V = 886.25 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 153 K

  • 0.60 × 0.57 × 0.52 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.659, Tmax = 0.747

  • 9182 measured reflections

  • 1855 independent reflections

  • 1577 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.123

  • S = 1.11

  • 1855 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2 0.84 1.78 2.5240 (15) 147
O1A—H1OA⋯O3 0.84 1.58 2.369 (6) 156
C6—H6⋯O3i 0.95 2.55 3.2797 (15) 134
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is known for its high antifungal activity (Prats et al., 2007). In the molecule, the hydroxy–group is disordered over two positions [O1—H10 and O1A—H10A with occupancies of 0.769 (3) and 0.231 (3), respectively] related to each other via 180° rotation about the C3–C6 molecule axis. The molecule is almost planar with a maximum derivation from the mean plane of all non hydrogen atoms (RMS = 0.0458) of 0.1185 (14)Å for the methyl atom C8 (Fig. 1). The bond lengths and bond angles of the benzene ring are normal. The carbonyl and the disordered hydroxy–group of the molecule are involved in classical intramolecular H–bonds (O1—H1O···O2, 2.5240 (15)Å, 147.3°; O1A—H1OA···O3 2.369 (6)Å, 155.8°), while no conventional intermolecular hydrogen bond is found in the packing structure. The structure is stabilized via ππ–interactions (Janiak, 2000) involving the neighboring diacylphenol molecules in the stacks - Cg···Cg distance between consecutive molecules is 3.5986 (1)Å, which run in direction of the crystallographic a–axis (Fig. 2). Interaction between these stacks is realised via weak C—H···O interactions (Desiraju & Steiner, 1999) C6—H6···O3i (3.2797 (15)Å). Symmetry code: (i) -x; y-1/2; -z-1/2.

Related literature top

For hydrogen bonding, see: Desiraju & Steiner (1999). For ππ interactions, see: Janiak (2000). For the antifungal activity of the title compound, see: Prats et al. (2007).

Experimental top

The title compound has been obtained as a by–product during attempted formation of a complex between 2–acetyl–4–ethynylphenol with Co(II) in MeOH solution due to hydrolysis. The prismatic shaped crystals are yellow colored and stable in the air.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for methyl, C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for aryl and O—H = 0.84Å and Uiso(H) = 1.5Ueq(O) for hydroxy atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbring scheme. Displacement ellipsoids are drawn at 40% probability level. Dashed line represents intramolecular H–bond. Only major moiety of disordered hydroxy–group is presented.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a–axis. The weak hydrogen bonds are shown as dashed lines.
1-(5-Acetyl-2-hydroxyphenyl)ethanone top
Crystal data top
C10H10O3F(000) = 376
Mr = 178.18Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5377 reflections
a = 7.1134 (2) Åθ = 2.6–33.0°
b = 10.9260 (3) ŵ = 0.10 mm1
c = 11.5291 (3) ÅT = 153 K
β = 98.485 (2)°Prism, yellow
V = 886.25 (4) Å30.60 × 0.57 × 0.52 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1855 independent reflections
Radiation source: fine–focus sealed tube1577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.659, Tmax = 0.747k = 1313
9182 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1717P]
where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H10O3V = 886.25 (4) Å3
Mr = 178.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1134 (2) ŵ = 0.10 mm1
b = 10.9260 (3) ÅT = 153 K
c = 11.5291 (3) Å0.60 × 0.57 × 0.52 mm
β = 98.485 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1855 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1577 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.747Rint = 0.018
9182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.11Δρmax = 0.30 e Å3
1855 reflectionsΔρmin = 0.21 e Å3
132 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.36987 (18)0.74231 (10)0.01694 (11)0.0392 (4)0.769 (3)
H1O0.41390.73350.08810.059*0.769 (3)
O1A0.0897 (7)1.0538 (5)0.2444 (3)0.0555 (15)0.231 (3)
H1OA0.06361.12840.23930.083*0.231 (3)
O20.46630 (14)0.80245 (8)0.22874 (8)0.0416 (3)
O30.05289 (18)1.25536 (12)0.17533 (10)0.0643 (4)
C10.30909 (15)0.85929 (11)0.00259 (10)0.0301 (3)
H1A0.35340.77800.01240.036*0.231 (3)
C20.32180 (14)0.94450 (10)0.08990 (9)0.0254 (3)
C30.25975 (14)1.06404 (10)0.06490 (9)0.0256 (3)
H30.26901.12230.12670.031*
C40.18496 (15)1.09999 (11)0.04787 (10)0.0301 (3)
C50.17072 (16)1.01185 (13)0.13782 (10)0.0354 (3)
H50.11771.03450.21530.042*0.769 (3)
C60.23194 (16)0.89384 (13)0.11574 (10)0.0361 (3)
H60.22160.83580.17770.043*
C70.40012 (16)0.90573 (11)0.20988 (10)0.0301 (3)
C80.3997 (2)0.99274 (13)0.30966 (11)0.0432 (3)
H8A0.43000.94840.38390.065*
H8B0.27381.03030.30530.065*
H8C0.49501.05670.30520.065*
C90.11948 (17)1.22703 (13)0.07529 (12)0.0408 (3)
C100.1355 (2)1.31998 (13)0.02060 (15)0.0483 (4)
H10A0.08781.39890.01170.073*
H10B0.26901.32850.05570.073*
H10C0.06031.29350.08070.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0458 (7)0.0296 (6)0.0432 (7)0.0006 (5)0.0100 (5)0.0058 (5)
O1A0.056 (3)0.080 (4)0.028 (2)0.018 (3)0.0051 (18)0.005 (2)
O20.0476 (6)0.0300 (5)0.0460 (5)0.0046 (4)0.0027 (4)0.0099 (4)
O30.0627 (7)0.0742 (8)0.0516 (7)0.0163 (6)0.0056 (5)0.0302 (6)
C10.0222 (5)0.0309 (6)0.0383 (6)0.0045 (4)0.0082 (4)0.0042 (5)
C20.0193 (5)0.0284 (6)0.0289 (6)0.0029 (4)0.0046 (4)0.0013 (4)
C30.0197 (5)0.0283 (6)0.0289 (6)0.0016 (4)0.0034 (4)0.0022 (4)
C40.0188 (5)0.0392 (7)0.0318 (6)0.0023 (5)0.0022 (4)0.0076 (5)
C50.0221 (6)0.0562 (8)0.0268 (6)0.0061 (5)0.0002 (4)0.0029 (5)
C60.0266 (6)0.0491 (8)0.0333 (6)0.0083 (5)0.0062 (5)0.0102 (5)
C70.0271 (6)0.0281 (6)0.0352 (6)0.0018 (4)0.0043 (4)0.0065 (5)
C80.0586 (9)0.0409 (7)0.0285 (6)0.0063 (6)0.0012 (6)0.0040 (5)
C90.0259 (6)0.0486 (8)0.0471 (7)0.0029 (5)0.0029 (5)0.0203 (6)
C100.0455 (8)0.0330 (7)0.0667 (9)0.0054 (6)0.0090 (7)0.0157 (6)
Geometric parameters (Å, º) top
O1—C11.3573 (16)C4—C51.4078 (18)
O1—H1O0.8400C4—C91.4833 (18)
O1A—C51.357 (4)C5—C61.373 (2)
O1A—H1OA0.8400C5—H50.9500
O2—C71.2297 (15)C6—H60.9500
O3—C91.2204 (17)C7—C81.4926 (17)
C1—C61.3908 (17)C8—H8A0.9800
C1—C21.4083 (16)C8—H8B0.9800
C1—H1A0.9500C8—H8C0.9800
C2—C31.3951 (16)C9—C101.493 (2)
C2—C71.4751 (15)C10—H10A0.9800
C3—C41.3870 (15)C10—H10B0.9800
C3—H30.9500C10—H10C0.9800
C1—O1—H1O109.5C5—C6—C1119.96 (11)
C5—O1A—H1OA109.5C5—C6—H6120.0
O1—C1—C6118.89 (11)C1—C6—H6120.0
O1—C1—C2120.91 (11)O2—C7—C2120.74 (11)
C6—C1—C2120.20 (11)O2—C7—C8119.50 (11)
C6—C1—H1A119.9C2—C7—C8119.76 (10)
C2—C1—H1A119.9C7—C8—H8A109.5
C3—C2—C1118.66 (10)C7—C8—H8B109.5
C3—C2—C7121.78 (10)H8A—C8—H8B109.5
C1—C2—C7119.56 (10)C7—C8—H8C109.5
C4—C3—C2121.65 (11)H8A—C8—H8C109.5
C4—C3—H3119.2H8B—C8—H8C109.5
C2—C3—H3119.2O3—C9—C4120.31 (15)
C3—C4—C5118.21 (11)O3—C9—C10120.26 (13)
C3—C4—C9121.99 (12)C4—C9—C10119.43 (11)
C5—C4—C9119.80 (11)C9—C10—H10A109.5
O1A—C5—C6124.4 (3)C9—C10—H10B109.5
O1A—C5—C4114.2 (3)H10A—C10—H10B109.5
C6—C5—C4121.30 (11)C9—C10—H10C109.5
C6—C5—H5119.3H10A—C10—H10C109.5
C4—C5—H5119.3H10B—C10—H10C109.5
O1—C1—C2—C3179.13 (11)O1A—C5—C6—C1178.5 (3)
C6—C1—C2—C31.47 (16)C4—C5—C6—C10.28 (17)
O1—C1—C2—C70.74 (16)O1—C1—C6—C5179.54 (11)
C6—C1—C2—C7178.67 (10)C2—C1—C6—C51.04 (17)
C1—C2—C3—C40.59 (16)C3—C2—C7—O2174.85 (10)
C7—C2—C3—C4179.55 (10)C1—C2—C7—O25.01 (17)
C2—C3—C4—C50.69 (16)C3—C2—C7—C84.99 (17)
C2—C3—C4—C9179.72 (10)C1—C2—C7—C8175.15 (11)
C3—C4—C5—O1A177.7 (2)C3—C4—C9—O3179.39 (12)
C9—C4—C5—O1A1.9 (3)C5—C4—C9—O30.20 (19)
C3—C4—C5—C61.14 (17)C3—C4—C9—C100.55 (18)
C9—C4—C5—C6179.26 (11)C5—C4—C9—C10179.86 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.841.782.5240 (15)147
O1A—H1OA···O30.841.582.369 (6)156
C6—H6···O3i0.952.553.2797 (15)134
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H10O3
Mr178.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)7.1134 (2), 10.9260 (3), 11.5291 (3)
β (°) 98.485 (2)
V3)886.25 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.57 × 0.52
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.659, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
9182, 1855, 1577
Rint0.018
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.11
No. of reflections1855
No. of parameters132
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.841.782.5240 (15)147.3
O1A—H1OA···O30.841.582.369 (6)155.8
C6—H6···O3i0.952.553.2797 (15)134.2
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

This work was performed within the Cluster of Excellence `Structure Design of Novel High–Performance Materials via Atomic Design and Defect Engineering (ADDE)', which is financially supported by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK). LI is gratefull to DFG for a travel grant.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 29–123. Oxford University Press.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationPrats, E., Galindo, J. C., Bazzalo, M. E., León, A., Macías, F. A., Rubiales, D. & Jorrín, J. V. (2007). J. Chem. Ecol. 33, 2245–2253.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds