supplementary materials


tk2752 scheme

Acta Cryst. (2011). E67, m916    [ doi:10.1107/S1600536811021611 ]

Bis(4-amino-1-hexylpyridinium) bis(1,2-dicyanoethene-1,2-dithiolato)cuprate(II)

Q. Liu and J. Liu

Abstract top

The complete complex anion in the title salt, (C11H19N2)2[Cu(C4N2S2)2], has 2/m symmetry while the complete cation is generated by mirror symmetry with the non-H atoms of the alkyl chain lying on the plane. A square-planar geometry based on an S4 donor set is found in the anion; the Cu-S distance is 2.2663 (5) Å. In the crystal, intermolecular N-H...N hydrogen bonds link the ions into layers in the bc plane comprising alternating rows of cations and anions.

Comment top

Square-planar M[dithiolene]2 complexes have attracted extensive interest in the areas of conducting and magnetic materials, dyes, non-linear optics and catalysis (Robertson et al., 2002; Cassoux et al., 1991). Herein, we report the crystal structure of the title compound, Fig.1.

The [Cu(mnt)2]2- dianion is located about a site of symmetry 2/m. The 1-hexyl-4-aminopyridinium cation lies on a mirror plane whereby the non-H atoms of the alkyl chain lie on the plane which bisects the 1,4 atoms of the benzene ring.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the cations and anions to form a layer in the bc plane comprising alternating cations and anions.

Related literature top

For square-planar M[dithiolene]2 complexes, see: Cassoux et al. (1991); Robertson & Cronin (2002).

Experimental top

Disodium maleonitriledithiolate (468 mg, 2.5 mmol) and cupric nitrate trihydrate (302 mg, 1.25 mmol) were mixed under stirring in water (20 mL) at room temperature. Subsequently, a solution of 1-hexyl-4-aminopyridinium iodide (765 mg, 2.5 mmol) in water (10 mL) was added to the mixture. The brown precipitate that formed immediately was filtered off and washed with water. The crude product was recrystallized from acetone (20 mL) to give brown crystals. The crystals suitable for X-ray diffraction measurements were obtained by diffusing diethyl ether into the solution of the salt in acetone for 6 days.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93 or 0.96 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The N-bound H atom was refined freely.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the ions comprising (I) showing atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The cation has mirror symmetry with i: x, 1-y, z. The Cu atom in the anion is located on a site of symmetry 2/m. Symmetry operations ii: -x, y, -z and iii: -x, 1-y, -z.
[Figure 2] Fig. 2. Partial packing view showing the layer in the bc plane. Dashed lines indicate intermolecular N—H···N hydrogen bonds.
Bis(4-amino-1-hexylpyridinium) bis(1,2-dicyanoethene-1,2-dithiolato)cuprate(II) top
Crystal data top
(C11H19N2)2[Cu(C4N2S2)2]F(000) = 734
Mr = 702.51Dx = 1.348 Mg m3
Monoclinic, C2/mMelting point = 430–432 K
Hall symbol: -C 2yMo Kα radiation, λ = 0.71073 Å
a = 13.3648 (9) ÅCell parameters from 2059 reflections
b = 10.0768 (4) Åθ = 3.1–29.2°
c = 13.8550 (8) ŵ = 0.91 mm1
β = 111.902 (8)°T = 293 K
V = 1731.24 (17) Å3Block, brown
Z = 20.3 × 0.2 × 0.1 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1805 independent reflections
Radiation source: fine-focus sealed tube1299 reflections with I > 2σ(I)
graphiteRint = 0.019
φ and ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1216
Tmin = 0.939, Tmax = 1.000k = 1112
4194 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0411P)2]
where P = (Fo2 + 2Fc2)/3
1805 reflections(Δ/σ)max < 0.001
117 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
(C11H19N2)2[Cu(C4N2S2)2]V = 1731.24 (17) Å3
Mr = 702.51Z = 2
Monoclinic, C2/mMo Kα radiation
a = 13.3648 (9) ŵ = 0.91 mm1
b = 10.0768 (4) ÅT = 293 K
c = 13.8550 (8) Å0.3 × 0.2 × 0.1 mm
β = 111.902 (8)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1805 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1299 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 1.000Rint = 0.019
4194 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.22 e Å3
S = 0.92Δρmin = 0.17 e Å3
1805 reflectionsAbsolute structure: ?
117 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.04510 (17)
S10.04362 (5)0.66007 (5)0.12376 (4)0.0623 (2)
N10.12555 (15)0.7075 (2)0.40284 (14)0.0721 (6)
N20.3513 (2)0.50000.5099 (2)0.0615 (8)
N30.39247 (19)0.50000.23171 (18)0.0536 (6)
C10.07750 (14)0.56692 (18)0.23653 (14)0.0445 (4)
C20.10516 (16)0.6424 (2)0.33068 (15)0.0507 (5)
C30.3637 (2)0.50000.4193 (2)0.0472 (7)
C40.37096 (16)0.38155 (19)0.36957 (15)0.0544 (5)
H4A0.36660.30050.39980.065*
C50.38435 (18)0.3850 (2)0.27783 (17)0.0586 (6)
H5A0.38810.30540.24540.070*
C60.4079 (3)0.50000.1312 (2)0.0678 (9)
H6A0.44870.42290.12800.081*
C70.3047 (3)0.50000.0398 (3)0.0810 (10)
H7A0.26350.42260.04140.097*
C80.3282 (3)0.50000.0612 (3)0.0819 (11)
H8A0.37400.41170.06570.098*
C90.2314 (3)0.50000.1571 (3)0.0917 (12)
H9A0.18920.42300.15690.110*
C100.2529 (4)0.50000.2572 (3)0.0930 (12)
H10A0.29500.42290.25770.112*
C110.1534 (3)0.50000.3517 (3)0.0931 (12)
H11A0.17160.50000.41250.140*
H11B0.11190.42220.35190.140*
H2A0.3461 (18)0.432 (2)0.5381 (16)0.075 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0613 (3)0.0335 (3)0.0420 (3)0.0000.0211 (2)0.000
S10.1042 (5)0.0323 (3)0.0463 (3)0.0005 (3)0.0235 (3)0.0001 (2)
N10.0822 (14)0.0679 (13)0.0574 (11)0.0058 (11)0.0159 (10)0.0184 (10)
N20.076 (2)0.0505 (19)0.0559 (16)0.0000.0218 (15)0.000
N30.0594 (15)0.0435 (14)0.0669 (15)0.0000.0340 (13)0.000
C10.0492 (11)0.0407 (10)0.0423 (10)0.0004 (9)0.0155 (9)0.0020 (8)
C20.0538 (13)0.0454 (11)0.0486 (11)0.0054 (10)0.0143 (10)0.0004 (10)
C30.0386 (16)0.0423 (17)0.0544 (17)0.0000.0100 (14)0.000
C40.0649 (14)0.0343 (11)0.0652 (14)0.0001 (10)0.0257 (12)0.0042 (10)
C50.0692 (15)0.0352 (11)0.0769 (15)0.0012 (10)0.0338 (13)0.0054 (11)
C60.080 (2)0.058 (2)0.083 (2)0.0000.051 (2)0.000
C70.090 (3)0.096 (3)0.070 (2)0.0000.045 (2)0.000
C80.092 (3)0.087 (3)0.079 (2)0.0000.046 (2)0.000
C90.108 (3)0.096 (3)0.084 (3)0.0000.051 (3)0.000
C100.114 (3)0.099 (3)0.080 (3)0.0000.053 (3)0.000
C110.122 (3)0.073 (3)0.097 (3)0.0000.055 (3)0.000
Geometric parameters (Å, °) top
Cu1—S1i2.2663 (5)C4—C51.349 (3)
Cu1—S12.2663 (5)C4—H4A0.9300
Cu1—S1ii2.2663 (5)C5—H5A0.9300
Cu1—S1iii2.2663 (5)C6—C71.483 (4)
S1—C11.7319 (19)C6—H6A0.9600
N1—C21.141 (2)C7—C81.545 (4)
N2—C31.327 (4)C7—H7A0.9600
N2—H2A0.80 (2)C8—C91.468 (5)
N3—C51.347 (2)C8—H8A1.0943
N3—C5iii1.347 (2)C9—C101.519 (4)
N3—C61.482 (3)C9—H9A0.9601
C1—C1iii1.349 (4)C10—C111.478 (5)
C1—C21.434 (3)C10—H10A0.9600
C3—C41.399 (2)C11—H11A0.9600
C3—C4iii1.399 (2)C11—H11B0.9600
S1i—Cu1—S1180.00 (2)N3—C5—C4122.1 (2)
S1i—Cu1—S1ii90.75 (3)N3—C5—H5A118.9
S1—Cu1—S1ii89.25 (3)C4—C5—H5A118.9
S1i—Cu1—S1iii89.25 (3)N3—C6—C7113.0 (2)
S1—Cu1—S1iii90.75 (3)N3—C6—H6A108.9
S1ii—Cu1—S1iii180.00 (3)C7—C6—H6A108.9
C1—S1—Cu1101.76 (6)C6—C7—C8109.6 (3)
C3—N2—H2A121.7 (17)C6—C7—H7A109.8
C5—N3—C5iii118.7 (2)C8—C7—H7A109.5
C5—N3—C6120.65 (12)C9—C8—C7114.3 (3)
C5iii—N3—C6120.65 (12)C9—C8—H8A105.7
C1iii—C1—C2122.02 (11)C7—C8—H8A111.0
C1iii—C1—S1122.82 (6)C8—C9—C10115.0 (3)
C2—C1—S1115.16 (14)C8—C9—H9A108.5
N1—C2—C1176.9 (2)C10—C9—H9A108.3
N2—C3—C4121.46 (13)C11—C10—C9113.2 (3)
N2—C3—C4iii121.46 (13)C11—C10—H10A109.3
C4—C3—C4iii117.1 (3)C9—C10—H10A108.5
C5—C4—C3120.0 (2)C10—C11—H11A109.8
C5—C4—H4A120.0C10—C11—H11B109.3
C3—C4—H4A120.0H11A—C11—H11B109.5
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y, −z; (iii) x, −y+1, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1iv0.81 (2)2.39 (2)3.157 (2)160 (2)
Symmetry codes: (iv) −x+1/2, y−1/2, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.81 (2)2.39 (2)3.157 (2)160 (2)
Symmetry codes: (i) −x+1/2, y−1/2, −z+1.
Acknowledgements top

The authors thank the Science and Technology Department of Jiangsu Province, People's Republic of China, for support.

references
References top

Cassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. E. (1991). Coord. Chem. Rev. 110, 115–160.

Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.