organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1660-o1661

3-(4-Methyl­phen­yl)-1-phenyl-3-(4,5,6,7-tetra­hydro-1,2,3-benzoselena­diazol-4-yl)propan-1-one

aCentre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India, bDepartment of Bioinformatics, Alagappa University, Karaikudi 630 003, India, cDepartment of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India, dDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and eDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: jjkanthan@gmail.com

(Received 17 May 2011; accepted 6 June 2011; online 18 June 2011)

In the title compound, C22H22N2OSe, the fused six-membered ring of the 4,5,6,7-tetra­hydro­benzo[d][1,2,3] selenadiazole group adopts a near to envelope (E form) conformation and the five-membered 1,2,3-selenadiazole ring is essentially planar (r.m.s. deviation = 0.0059 Å). In the crystal, adjacent mol­ecules are inter­linked through weak inter­molecular C—H⋯π inter­actions.

Related literature

For bond lengths in compounds containing a 1,2,3-selenadiazole group, see: Arsenyan et al. (2007[Arsenyan, P., Oberte, K. & Belyakov, S. (2007). Chem. Heterocycl. Compd, 43, 233-237.]); Saravanan et al. (2006a[Saravanan, S., Muthusubramanian, S. & Polborn, K. (2006a). Indian J. Chem. Sect. B, 45, 758-761.],b[Saravanan, S., Nithya, A. & Muthusubramanian, S. (2006b). J. Heterocycl. Chem. 43, 149-151.], 2007[Saravanan, S., Athimoolam, S. & Muthusubramanian, S. (2007). ARKIVOC, 8, 22-33.], 2008[Saravanan, S., Azath, I. A. & Muthusubramanian, S. (2008). J. Org. Chem, 73, 2323-2329.]); Marx et al. (2007[Marx, A., Manivannan, V., Saravanan, S., Muthusubramanian, S. & Sridhar, B. (2007). Acta Cryst. E63, o4676.], 2008a[Marx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008a). Acta Cryst. E64, o349.],b[Marx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008b). Acta Cryst. E64, o729.]); Gunasekaran et al. (2007a[Gunasekaran, B., Saravanan, S., Manivannan, V., Muthusubramanian, S. & Nethaji, M. (2007a). Acta Cryst. E63, o4167.],b[Gunasekaran, B., Manivannan, V., Saravanan, S., Muthusubramanian, S. & Nethaji, M. (2007b). Acta Cryst. E63, o4024.]). For biological applications of 1,2,3-selenadiazole derivatives, see: Kuroda et al. (2001[Kuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent 6 166 054.]); El-Bahaie et al. (1990[El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791-793.]); El-Kashef et al. (1986[El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27-30.]); Plano et al. (2010[Plano, D., Moreno, E., Font, M., Encıo, I., Palop, J. A. & Sanmartın, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680-691.]); Padmavathi et al. (2002[Padmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9-12.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For C—H⋯π inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11-40. New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22N2OSe

  • Mr = 409.38

  • Triclinic, [P \overline 1]

  • a = 8.1485 (9) Å

  • b = 9.7929 (9) Å

  • c = 12.1234 (13) Å

  • α = 98.707 (9)°

  • β = 96.387 (9)°

  • γ = 94.792 (9)°

  • V = 945.36 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 293 K

  • 0.5 × 0.40 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.585, Tmax = 1.000

  • 8343 measured reflections

  • 3339 independent reflections

  • 2615 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.00

  • 3339 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

1,2,3-Selenadiazole and its derivatives exhibit various potential biological activities such as anti-fungal (Kuroda et al., 2001), anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990), anti-cancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) activities. Considering the importances of the 1,2,3-selenadiazole derivatives, we present herein the single-crystal structure analysis of the title compound. The bond lengths of the 1,2,3-selenadiazole moiety in the title compound are comparable to those observed for selenadiazole moieties in several crystal structures such as 4-methyl-5-ethoxycarbonyl-1,2,3-selenadiazole phenylboronic acid (Arsenyan et al., 2007), diethyl 2-((4-methylphenyl)(4-phenyl-1,2,3-selenadiazol-5-yl)methyl)malonate (Saravanan et al., 2006a), 4-(4-chlorophenyl)-5-(1-(4-methoxyphenyl)-2-methyl-2-nitropropyl)-1,2,3-selenadiazole (Saravanan et al., 2006b), 3-(4-methylphenyl)-3-(4-(4-methylphenyl)-1,2,3-selenadiazol-5-yl)-2-phenylpropanenitrile (Saravanan et al., 2007), ethyl (Z)-3-(4-chlorophenyl)-2-cyano-3-(4-phenyl-1,2,3-selenadiazol-5-yl)prop-2-enoate (Saravanan et al., 2008), 5-(2-methyl-2-nitro-1-phenylpropyl)-4-phenyl-1,2,3-selenadiazole (Marx et al., 2007), 4-(4-Chlorophenyl)-5-(1-(4-chlorophenyl)-2-methyl-2-nitropropyl)-1,2,3-selenadiazole (Marx et al., 2008a), diethyl 2-((4-nitrophenyl)(4-phenyl-1,2,3-selenadiazol-5-yl)methyl)malonate (Marx et al., 2008b), 5-[2-methyl-1-(4-methylphenyl)-2-nitropropyl]-4-phenyl-1,2,3-selenadiazole (Gunasekaran et al., 2007a) and 4-(4-chlorophenyl)-5-[2-methyl-1-(4-methylphenyl)-2-nitropropyl]-1,2,3-selenadiazole (Gunasekaran et al., 2007b). The molecular structure of the title compound is shown in Fig. 1.

The five-membered 1,2,3-selenadiazole moiety (C1/N1/N2/Se1/C2) of the title compound adopts a planar conformation as observed in the selenadiazole moieties of several crystal structures (Arsenyan et al., 2007; Saravanan et al., 2006a; Saravanan et al., 2006b; Saravanan et al., 2007; Saravanan et al., 2008; Marx et al., 2007; Marx et al., 2008a; Marx et al., 2008b; Gunasekaran et al., 2007a; Gunasekaran et al., 2007b). Cremer & Pople puckering analysis (Cremer & Pople, 1975) cannot be performed, for its weighted average absolute torsion angle is 0.89°, which is less than 5.0°. However, the fused six-membered ring (C1/C2/C3/C4/C5/C6) of the 4,5,6,7-tetrahydrobenzo[d][1,2,3] selenadiazole group adopts a near envelope (E form) conformation with puckering parameters of Q = 0.485 (3) Å, θ = 47.7 (4)° and Φ = 217.1 (5)°.

The molecular structure is stabilized by an intramolecular C7—H7···N1 interaction (Fig. 2) [C7-N1 distance: 2.96 Å, H7-N1 distance: 2.57 Å and C7-H7···N1 angle 104 °]. The C—H···π interaction (Fig. 2) is observed between C4—H4A···Cg (Cg is the centroid of the C17—C22 six-membered ring, C···Cg distance: 3.549 (3) Å, H-Perp: -2.61 Å), which contributes to the stabilization of crystal packing (Fig. 3, symmetry code for the centroid: 1-x,-y,-z). The bond distance of C—H···π interaction agrees with those described by Desiraju & Steiner (1999).

Related literature top

For bond lengths in compounds containing a 1,2,3-selenadiazole group, see: Arsenyan et al. (2007); Saravanan et al. (2006a,b, 2007, 2008); Marx et al. (2007, 2008a,b); Gunasekaran et al. (2007a,b). For biological applications of 1,2,3-selenadiazole derivatives, see: Kuroda et al. (2001); El-Bahaie et al. (1990); El-Kashef et al. (1986); Plano et al. (2010); Padmavathi et al. (2002). For ring puckering analysis, see: Cremer & Pople (1975). For C—H···π interactions, see: Desiraju & Steiner (1999).

Experimental top

A mixture of 2-[1-(4-methylphenyl)-3-oxo-3-phenylpropyl]-1-cyclohexanone (1 mmol, 0.32 g) and semicarbazide hydrochloride (1 mmol, 0.11 g) in ethanol (10 ml) was refluxed for 3 h. After completion of the reaction as monitored by TLC, the mixture was poured into ice cold water (50 ml) and the resulting mono-semicarbazone solid was filtered off. Then, a mixture of mono-semicarbazone (1 mmol, 0.38 g) and SeO2 (2 mmol, 0.44 g) in tetrahydrofuran (THF) (10 ml) were refluxed on a water bath for 30 minutes. After completion of the reaction as monitored by TLC, the reaction mixture was filtered to remove selenium powder, the filtrate was concentrated under vacuum, and the residue was subjected to column chromatography using a petroleum ether/ethylacetate mixture (95:5; v/v) as eluent to afford the pure product (Yield: 69%, melting point: 398-399 K). Dissolving the pure compound in a 3:1 mixture of dichloromethane:ethylacetate and slow evaporation of the solvents provided crystals suitable for X-ray analysis. Spectroscopic data for the title compound: IR (KBr): 2940 (C-H), 1679 (C=O), 1585 (N=N), 1351 (C-N)cm-1 .

Refinement top

The non-hydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. The C—H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and were refined using a riding model with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular interaction showing the weak intermolecular C—H···π and intramolecular C-H···N interactions in title compound (Cg is the centroid of C17—C22 ring. Symmetry code for the centroid: 1-x,-y,-z).
[Figure 3] Fig. 3. Packing diagram of the title compound.
3-(4-Methylphenyl)-1-phenyl-3-(4,5,6,7-tetrahydro-1,2,3-benzoselenadiazol- 4-yl)propan-1-one top
Crystal data top
C22H22N2OSeZ = 2
Mr = 409.38F(000) = 420
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1485 (9) ÅCell parameters from 4672 reflections
b = 9.7929 (9) Åθ = 2.9–29.2°
c = 12.1234 (13) ŵ = 2.00 mm1
α = 98.707 (9)°T = 293 K
β = 96.387 (9)°Block, blue
γ = 94.792 (9)°0.5 × 0.40 × 0.25 mm
V = 945.36 (17) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3339 independent reflections
Radiation source: fine-focus sealed tube2615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1111
Tmin = 0.585, Tmax = 1.000l = 1414
8343 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
3339 reflections(Δ/σ)max = 0.034
236 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C22H22N2OSeγ = 94.792 (9)°
Mr = 409.38V = 945.36 (17) Å3
Triclinic, P1Z = 2
a = 8.1485 (9) ÅMo Kα radiation
b = 9.7929 (9) ŵ = 2.00 mm1
c = 12.1234 (13) ÅT = 293 K
α = 98.707 (9)°0.5 × 0.40 × 0.25 mm
β = 96.387 (9)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3339 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2615 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 1.000Rint = 0.055
8343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
3339 reflectionsΔρmin = 0.66 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.19156 (4)0.31704 (3)0.12511 (3)0.05512 (16)
O10.3386 (3)0.0336 (3)0.32048 (18)0.0610 (6)
N10.0624 (3)0.1746 (2)0.0229 (2)0.0448 (6)
N20.2056 (3)0.1974 (3)0.0175 (2)0.0550 (7)
C10.0719 (3)0.2396 (3)0.0161 (2)0.0343 (6)
C20.0346 (3)0.3218 (3)0.0942 (2)0.0368 (6)
C30.1612 (4)0.3990 (3)0.1498 (2)0.0459 (7)
H3A0.16970.49730.11990.055*
H3B0.12580.38730.23000.055*
C40.3299 (3)0.3453 (3)0.1294 (2)0.0423 (7)
H4A0.33140.25860.17980.051*
H4B0.41500.41170.14610.051*
C50.3690 (3)0.3219 (3)0.0084 (2)0.0388 (6)
H5A0.36560.40830.04200.047*
H5B0.48040.29420.00280.047*
C60.2456 (3)0.2097 (3)0.0210 (2)0.0326 (6)
H60.26260.12270.02610.039*
C70.2761 (3)0.1843 (3)0.1445 (2)0.0327 (6)
H70.18380.11850.15490.039*
C80.2757 (3)0.3124 (3)0.2321 (2)0.0336 (6)
C90.1304 (4)0.3465 (3)0.2740 (2)0.0442 (7)
H90.03210.29010.24730.053*
C100.1276 (4)0.4621 (3)0.3547 (2)0.0503 (8)
H100.02780.48160.38100.060*
C110.2703 (4)0.5492 (3)0.3970 (2)0.0501 (8)
C120.4156 (4)0.5161 (3)0.3552 (2)0.0508 (8)
H120.51370.57270.38200.061*
C130.4181 (3)0.4012 (3)0.2750 (2)0.0415 (7)
H130.51800.38230.24860.050*
C140.2685 (5)0.6764 (4)0.4855 (3)0.0784 (12)
H14A0.26680.75770.45000.118*
H14B0.36600.68550.53930.118*
H14C0.17140.66650.52290.118*
C150.4339 (3)0.1113 (3)0.1603 (2)0.0381 (6)
H15A0.43230.03740.09700.046*
H15B0.52930.17740.15990.046*
C160.4547 (3)0.0505 (3)0.2673 (2)0.0362 (6)
C170.6188 (3)0.0024 (2)0.3039 (2)0.0328 (6)
C180.7605 (3)0.0330 (3)0.2545 (2)0.0419 (7)
H180.75620.08600.19690.050*
C190.9086 (4)0.0160 (3)0.2917 (3)0.0579 (8)
H191.00400.00530.25940.069*
C200.9149 (4)0.0951 (3)0.3752 (3)0.0603 (9)
H201.01440.12810.39900.072*
C210.7756 (4)0.1266 (3)0.4247 (3)0.0575 (9)
H210.78100.18040.48170.069*
C220.6269 (4)0.0777 (3)0.3890 (2)0.0459 (7)
H220.53250.09870.42230.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0423 (2)0.0661 (3)0.0560 (2)0.01699 (17)0.00317 (16)0.00744 (17)
O10.0453 (13)0.0959 (17)0.0575 (14)0.0249 (12)0.0249 (11)0.0392 (13)
N10.0341 (14)0.0493 (15)0.0504 (15)0.0004 (11)0.0051 (11)0.0081 (12)
N20.0353 (15)0.0650 (17)0.0626 (17)0.0015 (13)0.0057 (12)0.0061 (13)
C10.0360 (15)0.0315 (14)0.0331 (14)0.0009 (12)0.0043 (11)0.0008 (11)
C20.0379 (16)0.0372 (15)0.0332 (14)0.0080 (12)0.0015 (12)0.0011 (11)
C30.0564 (19)0.0429 (16)0.0401 (16)0.0054 (14)0.0033 (14)0.0139 (13)
C40.0456 (18)0.0457 (16)0.0360 (15)0.0015 (13)0.0094 (13)0.0085 (13)
C50.0340 (15)0.0472 (16)0.0372 (15)0.0014 (13)0.0066 (12)0.0123 (12)
C60.0319 (14)0.0349 (14)0.0311 (14)0.0036 (11)0.0060 (11)0.0036 (11)
C70.0284 (14)0.0356 (14)0.0358 (14)0.0026 (11)0.0069 (11)0.0093 (11)
C80.0378 (16)0.0369 (15)0.0291 (13)0.0077 (12)0.0063 (11)0.0109 (11)
C90.0369 (16)0.0501 (17)0.0451 (17)0.0063 (13)0.0056 (13)0.0049 (13)
C100.054 (2)0.0575 (19)0.0429 (17)0.0220 (17)0.0139 (15)0.0045 (14)
C110.075 (2)0.0421 (17)0.0343 (16)0.0160 (17)0.0026 (15)0.0064 (13)
C120.059 (2)0.0469 (18)0.0418 (17)0.0043 (15)0.0039 (15)0.0045 (14)
C130.0398 (17)0.0460 (16)0.0385 (15)0.0034 (13)0.0058 (12)0.0057 (13)
C140.110 (3)0.058 (2)0.063 (2)0.023 (2)0.005 (2)0.0098 (18)
C150.0382 (16)0.0398 (15)0.0397 (15)0.0099 (13)0.0106 (12)0.0094 (12)
C160.0387 (16)0.0383 (15)0.0329 (14)0.0055 (12)0.0092 (12)0.0054 (11)
C170.0357 (15)0.0295 (13)0.0316 (14)0.0050 (11)0.0031 (11)0.0003 (11)
C180.0355 (16)0.0407 (16)0.0492 (17)0.0031 (13)0.0058 (13)0.0070 (13)
C190.0358 (18)0.063 (2)0.073 (2)0.0031 (15)0.0055 (15)0.0082 (18)
C200.049 (2)0.066 (2)0.061 (2)0.0204 (17)0.0099 (17)0.0025 (17)
C210.072 (2)0.063 (2)0.0398 (17)0.0220 (18)0.0018 (16)0.0138 (15)
C220.0521 (18)0.0523 (18)0.0353 (15)0.0132 (14)0.0070 (13)0.0079 (13)
Geometric parameters (Å, º) top
N1—N21.266 (3)C12—C111.383 (4)
N1—C11.384 (3)C12—H120.9300
Se1—C21.834 (3)C13—C121.375 (4)
Se1—N21.887 (3)C13—C81.391 (4)
C1—C21.358 (4)C13—H130.9300
C3—C21.506 (4)C14—H14A0.9600
C3—H3A0.9700C14—H14B0.9600
C3—H3B0.9700C14—H14C0.9600
C4—C51.521 (3)C15—C161.506 (3)
C4—C31.521 (4)C15—C71.531 (3)
C4—H4A0.9700C15—H15A0.9700
C4—H4B0.9700C15—H15B0.9700
C5—H5A0.9700O1—C161.216 (3)
C5—H5B0.9700C17—C221.386 (3)
C6—C11.502 (3)C17—C181.390 (4)
C6—C51.535 (3)C17—C161.498 (3)
C6—C71.552 (3)C18—C191.390 (4)
C6—H60.9800C18—H180.9300
C7—C81.517 (3)C19—C201.364 (4)
C7—H70.9800C19—H190.9300
C9—C81.386 (4)C20—H200.9300
C9—C101.382 (4)C21—C201.375 (5)
C9—H90.9300C21—H210.9300
C10—C111.382 (4)C22—C211.389 (4)
C10—H100.9300C22—H220.9300
C11—C141.518 (4)
N1—N2—Se1110.78 (19)C10—C9—H9119.1
N1—C1—C6120.6 (2)C10—C11—C14121.7 (3)
N2—N1—C1117.2 (2)C11—C14—H14A109.5
C1—C6—C5109.0 (2)C11—C14—H14B109.5
C1—C6—C7114.5 (2)C11—C10—C9121.4 (3)
C1—C6—H6106.1C11—C10—H10119.3
C1—C2—C3124.5 (2)C11—C12—H12119.3
C1—C2—Se1109.5 (2)C11—C14—H14C109.5
C2—Se1—N286.70 (11)C12—C11—C10117.2 (3)
C2—C1—N1115.8 (2)C12—C11—C14121.0 (3)
C2—C1—C6123.5 (2)C12—C13—C8122.0 (3)
C2—C3—C4110.6 (2)C12—C13—H13119.0
C2—C3—H3A109.5C13—C8—C7122.8 (2)
C2—C3—H3B109.5C13—C12—C11121.3 (3)
C3—C4—H4A109.3C13—C12—H12119.3
C3—C4—H4B109.3H14A—C14—H14B109.5
C3—C2—Se1125.89 (19)H14A—C14—H14C109.5
H3A—C3—H3B108.1H14B—C14—H14C109.5
C4—C5—C6111.9 (2)C15—C7—C6109.07 (19)
C4—C5—H5A109.2C15—C7—H7106.6
C4—C5—H5B109.2H15A—C15—H15B107.7
H4A—C4—H4B107.9C16—C15—C7113.9 (2)
C4—C3—H3A109.5C16—C15—H15A108.8
C4—C3—H3B109.5C16—C15—H15B108.8
C5—C6—C7114.3 (2)O1—C16—C17120.1 (2)
C5—C6—H6106.1O1—C16—C15121.0 (2)
C5—C4—C3111.7 (2)C17—C18—H18120.2
C5—C4—H4A109.3C17—C22—H22119.9
C5—C4—H4B109.3C17—C16—C15118.8 (2)
H5A—C5—H5B107.9C18—C17—C16122.5 (2)
C6—C7—H7106.6C18—C19—H19119.8
C6—C5—H5A109.2C19—C18—C17119.6 (3)
C6—C5—H5B109.2C19—C18—H18120.2
C7—C6—H6106.1C19—C20—C21120.7 (3)
C7—C15—H15A108.8C19—C20—H20119.6
C7—C15—H15B108.8C20—C21—C22119.6 (3)
C8—C9—C10121.7 (3)C20—C21—H21120.2
C8—C9—H9119.1C20—C19—C18120.3 (3)
C8—C13—H13119.0C20—C19—H19119.8
C8—C7—C15113.0 (2)C21—C22—C17120.2 (3)
C8—C7—C6114.5 (2)C21—C22—H22119.9
C8—C7—H7106.6C21—C20—H20119.6
C9—C10—H10119.3C22—C17—C18119.5 (2)
C9—C8—C13116.4 (3)C22—C17—C16118.0 (2)
C9—C8—C7120.8 (2)C22—C21—H21120.2
N1—C1—C2—C3178.4 (2)C7—C15—C16—C17167.7 (2)
N1—C1—C2—Se10.9 (3)C8—C13—C12—C110.3 (4)
N2—N1—C1—C20.1 (4)C8—C9—C10—C110.1 (4)
N2—N1—C1—C6175.4 (2)C9—C10—C11—C120.1 (4)
N2—Se1—C2—C11.03 (19)C9—C10—C11—C14180.0 (3)
N2—Se1—C2—C3178.5 (2)C10—C9—C8—C130.4 (4)
C1—N1—N2—Se10.7 (3)C10—C9—C8—C7179.4 (2)
C1—C6—C5—C448.7 (3)C12—C13—C8—C90.5 (4)
C1—C6—C7—C870.1 (3)C12—C13—C8—C7179.3 (2)
C1—C6—C7—C15162.1 (2)C13—C12—C11—C100.0 (4)
C2—Se1—N2—N11.0 (2)C13—C12—C11—C14179.9 (3)
C3—C4—C5—C663.0 (3)C15—C7—C8—C9143.5 (2)
C4—C3—C2—C114.1 (4)C15—C7—C8—C1336.2 (3)
C4—C3—C2—Se1162.95 (19)C16—C17—C18—C19179.4 (3)
C5—C6—C1—C220.0 (3)C16—C17—C22—C21179.0 (3)
C5—C6—C1—N1164.9 (2)C16—C15—C7—C865.3 (3)
C5—C6—C7—C856.6 (3)C16—C15—C7—C6166.1 (2)
C5—C6—C7—C1571.1 (3)C17—C22—C21—C200.1 (4)
C5—C4—C3—C242.7 (3)C17—C18—C19—C200.8 (5)
C6—C1—C2—C33.1 (4)C18—C19—C20—C210.6 (5)
C6—C1—C2—Se1174.40 (19)C18—C17—C16—O1172.4 (3)
C6—C7—C8—C990.8 (3)C18—C17—C22—C210.1 (4)
C6—C7—C8—C1389.5 (3)C18—C17—C16—C1511.4 (4)
C7—C6—C5—C4178.3 (2)C22—C17—C18—C190.6 (4)
C7—C6—C1—C2149.4 (2)C22—C17—C16—O18.8 (4)
C7—C6—C1—N135.5 (3)C22—C17—C16—C15167.4 (2)
C7—C15—C16—O116.1 (4)C22—C21—C20—C190.2 (5)

Experimental details

Crystal data
Chemical formulaC22H22N2OSe
Mr409.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1485 (9), 9.7929 (9), 12.1234 (13)
α, β, γ (°)98.707 (9), 96.387 (9), 94.792 (9)
V3)945.36 (17)
Z2
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.5 × 0.40 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.585, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8343, 3339, 2615
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.00
No. of reflections3339
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.66

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

 

Footnotes

Additional correspondence author, e-mail: krishstrucbio@gmail.com.

Acknowledgements

JJ thanks Dr Binoy Krishna Saha, Assistant Professor, Department of Chemistry, Pondicherry University, Puducherry, for providing access to the X-ray facility. JM thanks the Council for Scientific and Industrial Research (CSIR) for a Senior Research Fellowship (SRF).

References

First citationArsenyan, P., Oberte, K. & Belyakov, S. (2007). Chem. Heterocycl. Compd, 43, 233–237.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.  Google Scholar
First citationEl-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791–793.  CAS PubMed Web of Science Google Scholar
First citationEl-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27–30.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunasekaran, B., Manivannan, V., Saravanan, S., Muthusubramanian, S. & Nethaji, M. (2007b). Acta Cryst. E63, o4024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunasekaran, B., Saravanan, S., Manivannan, V., Muthusubramanian, S. & Nethaji, M. (2007a). Acta Cryst. E63, o4167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent 6 166 054.  Google Scholar
First citationMarx, A., Manivannan, V., Saravanan, S., Muthusubramanian, S. & Sridhar, B. (2007). Acta Cryst. E63, o4676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008a). Acta Cryst. E64, o349.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008b). Acta Cryst. E64, o729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPadmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9–12.  CAS Google Scholar
First citationPlano, D., Moreno, E., Font, M., Encıo, I., Palop, J. A. & Sanmartın, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680–691.  CrossRef Google Scholar
First citationSaravanan, S., Athimoolam, S. & Muthusubramanian, S. (2007). ARKIVOC, 8, 22–33.  CrossRef Google Scholar
First citationSaravanan, S., Azath, I. A. & Muthusubramanian, S. (2008). J. Org. Chem, 73, 2323–2329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaravanan, S., Muthusubramanian, S. & Polborn, K. (2006a). Indian J. Chem. Sect. B, 45, 758–761.  Google Scholar
First citationSaravanan, S., Nithya, A. & Muthusubramanian, S. (2006b). J. Heterocycl. Chem. 43, 149–151.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1660-o1661
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds