organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1698-o1699

(Z)-6-Hy­dr­oxy-1a,5-di­methyl-8-[(morpholin-4-yl)meth­yl]-2,3,6,7,7a,8,10a,10b-octa­hydro­oxireno[2′,3′:9,10]cyclo­deca­[1,2-b]furan-9(1aH)-one

aLaboratoire de Chimie des Substances Naturelles, URAC16 Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, bLaboratoire de Chimie du Solide Appliqueé, Faculté des Sciences, Avenue Ibn, Battouta BP 1014 Rabat, Morocco, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 4 June 2011; accepted 10 June 2011; online 18 June 2011)

The title compound, C19H29NO5, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methylen-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from two fused five- and ten-membered rings with the (morpholin-4-yl)methyl group as a substituent. The five-membered lactone ring has an envelope conformation, whereas the ten-membered and the morpholine rings display approximate chair–chair and chair conformations, respectively. The dihedral angle between the ten-membered ring and the lactone ring is 27.93 (6)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen-bond inter­actions. An intra­molecular O—H⋯N hydrogen bond also occurs.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); Bellakhdar (1997[Bellakhdar, J. (1997). La Pharmacopé Marocaine Traditionnelle, pp. 272-274. Paris: Edition Ibis Press.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al. (1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For the reactivity of this sesquiterpene see: Der-Ren et al. (2006[Der-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83—91.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H29NO5

  • Mr = 351.43

  • Monoclinic, P 21

  • a = 11.7539 (3) Å

  • b = 6.8304 (2) Å

  • c = 11.8585 (3) Å

  • β = 101.328 (2)°

  • V = 933.50 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.45 × 0.33 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 11514 measured reflections

  • 2086 independent reflections

  • 1987 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.095

  • S = 1.07

  • 2086 reflections

  • 229 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N 0.82 2.24 3.051 (2) 172
C2—H2B⋯O2i 0.97 2.51 3.324 (3) 142
C10—H10⋯O1ii 0.98 2.47 3.270 (2) 138
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) [-x+2, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Anvillea radiata is a plant that grows in northern Africa and particularly in the two Maghreb countries, Morocco and Algeria. This plant is used in the traditional local medicine for the treatment of dysentery, gastric-intestinal disorders (Bellakhdar, 1997), and hypoglycemic activity (Qureshi et al., 1990), and has been reported to have antitumor activity (Abdel Sattar et al., 1996). In our study of different Moroccan endemic plants, we have demonstrated that the aerial parts of Anvillea radiata could be used as a renewable source of 9-hydroxyparthenolide (El Hassany et al., 2004). In order to prepare products with a high added value that can be used in the pharmacology and cosmetics industry, we studied the chemical reactivity of this major constituent of Anvillea radiata. Thus, treatment of this sesquiterpene with an equivalent amount of morpholine in ethanol (Der-Ren et al., 2006) led to (Z)-6-hydroxy-1a,5-dimethyl-8-(morpholinomethyl)-2,3,6,7,7a,8,10a,10b- octahydrooxireno[2',3': 9,10]cyclodeca[1,2-b]furan-9(1aH)-one, in a yield of 90%. The structure of this new product was determined by 1H and 13C NMR spectral analysis, IR and mass spectrometry, and was confirmed by its single-crystal X-ray structure. The molecule contains two fused rings which exhibit different conformations with a morpholin ring as a substituent to the lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.2O83(14) Å and ϕ = 68.2 (4)°. The ten-membered ring displays an approximate chair-chair conformation, while the morpholin ring has a perfect chair conformation with QT = 0.5690 (19) Å, θ2 = 0.00 (19)°, ϕ2 = 135 (6)°. In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into zigzag chains along the a axis (Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); Qureshi et al. (1990). For the reactivity of this sesquiterpene see: Der-Ren et al. (2006). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 9α-hydroxyparthenolide (0.5 g, 2 mmol) and one equivalent of morpholine in EtOH (20 ml) was stirred for one night at room temperature. The next day the reaction was stopped by adding water (10 ml) and extracted three times with ethyl acetate (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 600 mg wite solid (1.8 mmol) which was recrystallized in ethyle acetate. Mp = 474–475 K (ethyl acetate); 1H NMR (300 MHz, CDCl3) δ 1.30 (H-13, s, 3H); 1.70 (H-14, s, 3H); 2.55 (H-15, m, 2H); 2.68 (H-16, H-19, t, J = 4.5 Hz, 4H); 3.10 (H-10, d, J = 8.70 Hz, 1H); 3.68 (H-17 H-18, t, J = 4.5 Hz, 4H); 3.95 (H-6, dd, J1 = 1.2 Hz and J2 = 11.5 Hz, 1H); 4.55 (H-9, dd, J1 = 8,7 Hz, and J2 = 9.3 Hz, 1H); 5.55 (H-4, dd, J1 = 2,4 and J2 = 12, 0 Hz, 1H); 13C RMN (300 MHZ, CDCl3)δ 16.83 (C-13); 17.13 (C-14); 23.04 (C-3); 36.65 (C-2); 37.09 (C-7); 37.83 (C-8); 44.27 (C-11); 54.03 (C-16, C-19); 59.95 (C-15); 60.86 (C-10); 66.17 (C-1); 67.69 (C-17, C-18); 70.94 (C-6); 82.87 (C-9); 120.97 (C-4); 137.37 (C-5); 177.50( C-12); IR (KBr): 3433 cm-1 (OH), 1766 cm-1 (lactone carbonyl), 1668 cm-1 (double bond); MS (EI, 70 eV): 351(M+).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0. 98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1606 Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 and SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
(Z)-6-Hydroxy-1a,5-dimethyl-8-[(morpholin-4-yl)methyl]- 2,3,6,7,7a,8,10a,10b-octahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan- 9(1aH)-one top
Crystal data top
C19H29NO5F(000) = 380
Mr = 351.43Dx = 1.250 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11515 reflections
a = 11.7539 (3) Åθ = 1.8–26.4°
b = 6.8304 (2) ŵ = 0.09 mm1
c = 11.8585 (3) ÅT = 298 K
β = 101.328 (2)°Prism, colourless
V = 933.50 (4) Å30.45 × 0.33 × 0.12 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1987 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.4°, θmin = 1.8°
ϕ and ω scansh = 1414
11514 measured reflectionsk = 78
2086 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.064P)2 + 0.0786P]
where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C19H29NO5V = 933.50 (4) Å3
Mr = 351.43Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.7539 (3) ŵ = 0.09 mm1
b = 6.8304 (2) ÅT = 298 K
c = 11.8585 (3) Å0.45 × 0.33 × 0.12 mm
β = 101.328 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1987 reflections with I > 2σ(I)
11514 measured reflectionsRint = 0.022
2086 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.095H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
2086 reflectionsΔρmin = 0.13 e Å3
229 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.68147 (17)0.6737 (3)0.7681 (2)0.0506 (5)
H40.75140.69840.81810.061*
C10.59711 (14)0.3364 (3)0.86650 (18)0.0446 (4)
C20.56720 (18)0.5347 (4)0.9071 (2)0.0602 (6)
H2A0.62040.56650.97820.072*
H2B0.48940.53110.92320.072*
C30.5735 (2)0.6950 (4)0.8181 (3)0.0662 (7)
H3A0.50560.68720.75690.079*
H3B0.57360.82240.85430.079*
C50.68894 (16)0.6245 (3)0.66217 (19)0.0490 (5)
C60.80378 (17)0.5685 (3)0.63035 (17)0.0456 (5)
H60.79740.59630.54830.055*
C70.82776 (15)0.3483 (3)0.64773 (14)0.0379 (4)
H7A0.88590.31100.60390.045*
H7B0.75720.27750.61600.045*
C80.86965 (12)0.2824 (3)0.77319 (13)0.0298 (3)
H80.88790.40000.82060.036*
C110.97917 (13)0.1537 (3)0.79115 (13)0.0339 (4)
H110.98160.08170.72020.041*
C120.96289 (15)0.0110 (3)0.88422 (15)0.0392 (4)
C90.78383 (13)0.1581 (3)0.82571 (13)0.0320 (3)
H90.72950.08920.76540.038*
C100.71981 (13)0.2807 (3)0.89708 (14)0.0367 (4)
H100.76860.37850.94410.044*
C140.5874 (2)0.6021 (6)0.5617 (2)0.0801 (9)
H14A0.51620.62560.58760.120*
H14B0.58700.47180.53130.120*
H14C0.59500.69490.50280.120*
C130.51592 (17)0.2541 (4)0.7628 (2)0.0627 (6)
H13A0.54540.13100.74200.094*
H13B0.51010.34400.69970.094*
H13C0.44050.23490.78080.094*
C151.09185 (13)0.2656 (3)0.82863 (14)0.0408 (4)
H15A1.09220.32510.90300.049*
H15B1.15620.17420.83780.049*
C161.14927 (17)0.3355 (3)0.64750 (16)0.0451 (4)
H16A1.09090.24670.60690.054*
H16B1.22010.26170.67340.054*
C171.1711 (2)0.4972 (4)0.5678 (2)0.0615 (6)
H17A1.19660.44050.50190.074*
H17B1.09920.56690.53980.074*
C191.19698 (17)0.5597 (4)0.80346 (19)0.0526 (5)
H19A1.26860.49100.83390.063*
H19B1.17010.62100.86720.063*
C181.2193 (2)0.7138 (4)0.7208 (3)0.0680 (7)
H18A1.14900.78930.69530.082*
H18B1.27880.80220.75970.082*
N1.10962 (11)0.4195 (3)0.74672 (12)0.0387 (4)
O11.03350 (12)0.0969 (3)0.93835 (13)0.0577 (4)
O20.63581 (11)0.1901 (3)0.95455 (13)0.0552 (4)
O30.85411 (10)0.0191 (2)0.90318 (10)0.0397 (3)
O40.89640 (12)0.6831 (3)0.69114 (15)0.0587 (4)
H4A0.95640.61870.70180.088*
O51.25568 (15)0.6306 (3)0.62272 (16)0.0699 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0425 (9)0.0284 (10)0.0798 (14)0.0016 (9)0.0099 (9)0.0007 (10)
C10.0267 (8)0.0497 (12)0.0590 (11)0.0022 (8)0.0121 (7)0.0057 (9)
C20.0395 (10)0.0673 (16)0.0785 (14)0.0138 (11)0.0234 (9)0.0065 (13)
C30.0552 (12)0.0443 (13)0.1029 (19)0.0162 (12)0.0243 (12)0.0044 (14)
C50.0392 (9)0.0365 (11)0.0678 (12)0.0053 (8)0.0020 (8)0.0146 (9)
C60.0446 (9)0.0423 (11)0.0482 (9)0.0010 (9)0.0048 (7)0.0152 (9)
C70.0378 (8)0.0413 (10)0.0334 (8)0.0048 (8)0.0042 (6)0.0035 (7)
C80.0267 (7)0.0312 (8)0.0314 (7)0.0029 (7)0.0055 (5)0.0007 (6)
C110.0291 (7)0.0397 (10)0.0333 (7)0.0077 (7)0.0071 (6)0.0021 (7)
C120.0360 (8)0.0408 (10)0.0408 (8)0.0094 (8)0.0072 (6)0.0056 (8)
C90.0277 (7)0.0306 (9)0.0363 (7)0.0006 (7)0.0029 (6)0.0040 (7)
C100.0268 (7)0.0444 (10)0.0399 (8)0.0005 (7)0.0086 (6)0.0033 (8)
C140.0522 (12)0.100 (2)0.0787 (16)0.0113 (15)0.0105 (11)0.0245 (18)
C130.0323 (9)0.0586 (15)0.0895 (16)0.0032 (10)0.0064 (9)0.0044 (13)
C150.0285 (7)0.0589 (12)0.0347 (8)0.0033 (8)0.0054 (6)0.0019 (8)
C160.0464 (9)0.0478 (11)0.0451 (9)0.0003 (9)0.0186 (7)0.0042 (9)
C170.0723 (14)0.0625 (16)0.0556 (11)0.0063 (13)0.0270 (10)0.0036 (12)
C190.0363 (9)0.0637 (15)0.0590 (11)0.0096 (10)0.0120 (8)0.0182 (11)
C180.0537 (11)0.0563 (15)0.0977 (17)0.0141 (12)0.0234 (12)0.0159 (14)
N0.0299 (6)0.0480 (9)0.0392 (7)0.0003 (7)0.0093 (5)0.0058 (7)
O10.0481 (7)0.0642 (11)0.0607 (8)0.0229 (8)0.0098 (6)0.0236 (8)
O20.0364 (6)0.0698 (11)0.0645 (8)0.0062 (8)0.0226 (6)0.0214 (8)
O30.0344 (6)0.0383 (7)0.0469 (6)0.0060 (6)0.0096 (5)0.0122 (6)
O40.0453 (7)0.0417 (8)0.0877 (10)0.0077 (7)0.0099 (7)0.0103 (8)
O50.0682 (10)0.0662 (12)0.0845 (11)0.0174 (10)0.0375 (9)0.0003 (10)
Geometric parameters (Å, º) top
C4—C51.320 (3)C9—C101.495 (2)
C4—C31.509 (3)C9—H90.9800
C4—H40.9300C10—O21.444 (2)
C1—O21.452 (3)C10—H100.9800
C1—C101.466 (2)C14—H14A0.9600
C1—C21.503 (4)C14—H14B0.9600
C1—C131.509 (3)C14—H14C0.9600
C2—C31.533 (4)C13—H13A0.9600
C2—H2A0.9700C13—H13B0.9600
C2—H2B0.9700C13—H13C0.9600
C3—H3A0.9700C15—N1.473 (3)
C3—H3B0.9700C15—H15A0.9700
C5—C141.519 (3)C15—H15B0.9700
C5—C61.520 (3)C16—N1.465 (2)
C6—O41.418 (3)C16—C171.509 (3)
C6—C71.537 (3)C16—H16A0.9700
C6—H60.9800C16—H16B0.9700
C7—C81.540 (2)C17—O51.410 (3)
C7—H7A0.9700C17—H17A0.9700
C7—H7B0.9700C17—H17B0.9700
C8—C111.538 (2)C19—N1.467 (3)
C8—C91.540 (2)C19—C181.496 (4)
C8—H80.9800C19—H19A0.9700
C11—C121.513 (2)C19—H19B0.9700
C11—C151.518 (2)C18—O51.433 (3)
C11—H110.9800C18—H18A0.9700
C12—O11.198 (2)C18—H18B0.9700
C12—O31.342 (2)O4—H4A0.8200
C9—O31.459 (2)
C5—C4—C3128.1 (2)C8—C9—H9110.7
C5—C4—H4116.0O2—C10—C159.83 (12)
C3—C4—H4116.0O2—C10—C9119.60 (17)
O2—C1—C1059.33 (11)C1—C10—C9125.82 (16)
O2—C1—C2116.72 (19)O2—C10—H10113.6
C10—C1—C2115.79 (19)C1—C10—H10113.6
O2—C1—C13112.9 (2)C9—C10—H10113.6
C10—C1—C13122.61 (19)C5—C14—H14A109.5
C2—C1—C13116.52 (19)C5—C14—H14B109.5
C1—C2—C3112.15 (19)H14A—C14—H14B109.5
C1—C2—H2A109.2C5—C14—H14C109.5
C3—C2—H2A109.2H14A—C14—H14C109.5
C1—C2—H2B109.2H14B—C14—H14C109.5
C3—C2—H2B109.2C1—C13—H13A109.5
H2A—C2—H2B107.9C1—C13—H13B109.5
C4—C3—C2111.12 (19)H13A—C13—H13B109.5
C4—C3—H3A109.4C1—C13—H13C109.5
C2—C3—H3A109.4H13A—C13—H13C109.5
C4—C3—H3B109.4H13B—C13—H13C109.5
C2—C3—H3B109.4N—C15—C11113.24 (13)
H3A—C3—H3B108.0N—C15—H15A108.9
C4—C5—C14125.7 (2)C11—C15—H15A108.9
C4—C5—C6121.92 (18)N—C15—H15B108.9
C14—C5—C6112.3 (2)C11—C15—H15B108.9
O4—C6—C5111.44 (19)H15A—C15—H15B107.7
O4—C6—C7111.71 (16)N—C16—C17109.68 (19)
C5—C6—C7111.18 (17)N—C16—H16A109.7
O4—C6—H6107.4C17—C16—H16A109.7
C5—C6—H6107.4N—C16—H16B109.7
C7—C6—H6107.4C17—C16—H16B109.7
C6—C7—C8115.55 (16)H16A—C16—H16B108.2
C6—C7—H7A108.4O5—C17—C16112.00 (19)
C8—C7—H7A108.4O5—C17—H17A109.2
C6—C7—H7B108.4C16—C17—H17A109.2
C8—C7—H7B108.4O5—C17—H17B109.2
H7A—C7—H7B107.5C16—C17—H17B109.2
C11—C8—C7113.64 (13)H17A—C17—H17B107.9
C11—C8—C9103.05 (13)N—C19—C18110.83 (18)
C7—C8—C9116.19 (13)N—C19—H19A109.5
C11—C8—H8107.9C18—C19—H19A109.5
C7—C8—H8107.9N—C19—H19B109.5
C9—C8—H8107.9C18—C19—H19B109.5
C12—C11—C15109.82 (13)H19A—C19—H19B108.1
C12—C11—C8104.29 (12)O5—C18—C19111.8 (2)
C15—C11—C8114.26 (16)O5—C18—H18A109.3
C12—C11—H11109.4C19—C18—H18A109.3
C15—C11—H11109.4O5—C18—H18B109.3
C8—C11—H11109.4C19—C18—H18B109.3
O1—C12—O3121.22 (17)H18A—C18—H18B107.9
O1—C12—C11127.88 (16)C16—N—C19108.64 (14)
O3—C12—C11110.89 (14)C16—N—C15111.03 (17)
O3—C9—C10107.07 (13)C19—N—C15109.89 (14)
O3—C9—C8106.16 (11)C10—O2—C160.83 (11)
C10—C9—C8111.28 (15)C12—O3—C9111.20 (13)
O3—C9—H9110.7C6—O4—H4A109.5
C10—C9—H9110.7C17—O5—C18109.61 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N0.822.243.051 (2)172
C2—H2B···O2i0.972.513.324 (3)142
C10—H10···O1ii0.982.473.270 (2)138
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC19H29NO5
Mr351.43
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)11.7539 (3), 6.8304 (2), 11.8585 (3)
β (°) 101.328 (2)
V3)933.50 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.33 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11514, 2086, 1987
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.07
No. of reflections2086
No. of parameters229
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: APEX2 (Bruker, 2005), APEX2 and SAINT (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N0.822.243.051 (2)172
C2—H2B···O2i0.972.513.324 (3)142
C10—H10···O1ii0.982.473.270 (2)138
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+2, y+1/2, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationBellakhdar, J. (1997). La Pharmacopé Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press.  Google Scholar
First citationBruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDer-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83—91.  Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1698-o1699
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds