organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4,5,5-Tetra­methyl-1,3,2λ5-dioxa­phospho­lan-2-one

aFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
*Correspondence e-mail: andrzej@netesa.com

(Received 20 July 2011; accepted 21 July 2011; online 30 July 2011)

The five-membered ring in the title compound, C6H13O3P, exists in an envelope conformation with one of the ring C atoms at the flap position. The coordination geometry around the P atom is a distorted tetra­hedron. The crystal structure is stabilized by several weak C—H⋯O and P—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For a discussion of 1,3,2-dioxaphospho­lane chemistry, see: Maffei & Buono (2003[Maffei, M. & Buono, G. (2003). Tetrahedron, 59, 8821-8825.]); Zwierzak (1967[Zwierzak, A. (1967). Can. J. Chem. 45, 2501-2512.]) and for the Heck reaction, see: Beletskaya & Cheprakov (2000[Beletskaya, I. P. & Cheprakov, A. V. (2000). Chem. Rev. 100, 3009-3066.]); Skarżyńska et al. (2011[Skarżyńska, A., Trzeciak, A. M. & Siczek, M. (2011). Inorg. Chim. Acta, 365, 204-210.]). For hydrogen-bond inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]). For bond lengths in organic compounds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]) and for specifications of the analytical numeric absorption correction, see: Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13O3P

  • Mr = 164.13

  • Monoclinic, P 21 /c

  • a = 7.144 (2) Å

  • b = 7.570 (2) Å

  • c = 15.064 (4) Å

  • β = 90.98 (2)°

  • V = 814.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.33 × 0.27 × 0.26 mm

Data collection
  • Kuma KM-4 diffractometer with CCD detector

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]) Tmin = 0.910, Tmax = 0.952

  • 7254 measured reflections

  • 1869 independent reflections

  • 1673 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.10

  • 1869 reflections

  • 143 parameters

  • All H-atom parameters refined

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H113⋯Oi 0.98 (2) 2.70 (2) 3.583 (2) 150 (2)
C12—H123⋯Oi 1.00 (2) 2.60 (2) 3.499 (2) 150 (2)
C21—H213⋯Oi 0.96 (2) 2.68 (2) 3.544 (2) 148 (2)
C22—H222⋯O1ii 0.98 (2) 2.64 (2) 3.515 (2) 148 (2)
P—H⋯O1iii 1.28 (2) 2.58 (2) 3.4713 (12) 124 (1)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbon-carbon bond-forming catalytic reactions are very important fundamental processes in synthetic chemistry. Among them, one of the commonly recognized is the Heck reaction employing as the catalyst precursors palladium compounds with phosphorus ligands (Beletskaya & Cheprakov, 2000). Complexes incorporating in their structure 1,3,2-dioxaphospholane heterocyclic rings have been recently found to be efficient catalysts of the Heck reaction carried out under mild conditions (Skarżyńska et al., 2011). In this paper we report the synthesis and crystallization of tetramethyl dioxaphospholane, the title compound.

The geometric parameters around the four-coordinate phosphorus atom (Fig. 1) indicate a deformation of the ideal tetrahedron towards a trigonal pyramid. The O—P—O1 and O—P—O2 angles differ considerably from the ideal value of 109.5° and approach 120°, while O1—P—O2 is close to 90°. Such deformations might be explained by the effect of different substituents and bond types. Bond lengths P—O1, P—O2, P—O, and P—H are typical (Allen et al., 1987). The heterocyclic five-membered ring P/O1/C1/C2/O2 adopts an envelope conformation with the C1 atom deviating from the four-atom plane by about 0.55 Å.

The crystal structure is stabilized by a few hydrogen bonds of the C—H···O and P—H···O types (Desiraju & Steiner, 1999). Consequently, a three-dimensional network of such interactions is formed in the crystal. The C11, C12 and C21 atoms act as hydrogen-bond donors, via H113, H123 and H213, respectively, to the Oi atom [symmetry code: (i) x, –y + 1/2, z + 1/2] as an acceptor (Table 1). As a result, chains running parallel to the [001] direction are formed. The adjacent chains of the molecules are further linked by C22—H222···O1ii and P—H···O1iii hydrogen interactions [symmetry codes: (ii) –x, y – 1/2, –z + 1/2; (iii) –x + 1, y – 1/2, –z + 1/2].

Related literature top

For discussion on 1,3,2-dioxaphospholane chemistry, see: Maffei & Buono (2003); Zwierzak (1967) and for the Heck reaction, see: Beletskaya & Cheprakov (2000); Skarżyńska et al. (2011). For hydrogen-bond interactions, see: Desiraju & Steiner (1999). For bond lengths in organic compounds, see: Allen et al. (1987). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986) and for specifications of the analytical numeric absorption correction, see: Clark & Reid (1995).

Experimental top

The title compound may be prepared according to the known procedures: utilizing pinacol and phosphorus trichloride, followed by hydrolysis (Zwierzak, 1967) or involving a transestrification process between pinacol and diethyl phosphite (Maffei & Buono, 2003). Here we report an alternative route. Crystallization of 2,2,3,3,7,7,8,8-octamethyl-1,4,6,9–5λ5-phosphaspiro[4.4]nonane in non-dried diethyl ether leads to hydrolysis of the tetraoxaspirophosphorane. As a result, 4,4,5,5-teramethyl-1,3,2-dioxaphospholane 2-oxide is formed as single crystals.

Refinement top

All H atoms were found in a difference Fourier map and refined isotropically. The measured C—H distances in methyl groups are in range 0.92 (2)–1.00 (2)Å and P—H bond length is 1.28 (2) Å. The highest residual peak and the deepest hole in the final difference map are located 0.77 and 0.76Å from the C1 and P atom, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
4,4,5,5-Tetramethyl-1,3,2λ5-dioxaphospholan-2-one top
Crystal data top
C6H13O3PF(000) = 352
Mr = 164.13Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4820 reflections
a = 7.144 (2) Åθ = 3.0–27.5°
b = 7.570 (2) ŵ = 0.29 mm1
c = 15.064 (4) ÅT = 100 K
β = 90.98 (2)°Block, colorless
V = 814.5 (4) Å30.33 × 0.27 × 0.26 mm
Z = 4
Data collection top
Kuma KM-4
diffractometer with CCD detector
1869 independent reflections
Radiation source: fine-focus sealed tube1673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
h = 99
Tmin = 0.910, Tmax = 0.952k = 99
7254 measured reflectionsl = 1913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.096All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.1298P]
where P = (Fo2 + 2Fc2)/3
1869 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C6H13O3PV = 814.5 (4) Å3
Mr = 164.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.144 (2) ŵ = 0.29 mm1
b = 7.570 (2) ÅT = 100 K
c = 15.064 (4) Å0.33 × 0.27 × 0.26 mm
β = 90.98 (2)°
Data collection top
Kuma KM-4
diffractometer with CCD detector
1869 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
1673 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.952Rint = 0.021
7254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 1.10Δρmax = 0.49 e Å3
1869 reflectionsΔρmin = 0.30 e Å3
143 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 K. Analytical numeric absorption correction was carried out with CrysAlis RED (Oxford Diffraction, 2010) using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.35196 (5)0.22996 (4)0.21158 (2)0.02085 (14)
H0.528 (2)0.199 (2)0.2076 (11)0.028 (4)*
O0.26815 (19)0.25962 (13)0.12379 (7)0.0376 (3)
O10.32677 (12)0.38610 (11)0.28007 (5)0.0172 (2)
C10.29786 (16)0.31569 (15)0.37050 (8)0.0152 (2)
C110.48914 (18)0.28153 (19)0.41307 (10)0.0236 (3)
H1110.553 (2)0.190 (2)0.3832 (12)0.030 (4)*
H1120.563 (3)0.389 (3)0.4098 (12)0.044 (5)*
H1130.476 (3)0.251 (2)0.4759 (14)0.037 (5)*
C120.19155 (18)0.45553 (17)0.42081 (8)0.0213 (3)
H1210.076 (2)0.494 (2)0.3871 (11)0.031 (4)*
H1220.265 (2)0.555 (2)0.4267 (10)0.026 (4)*
H1230.163 (2)0.408 (2)0.4813 (11)0.033 (4)*
O20.27159 (13)0.07451 (11)0.26996 (6)0.0224 (2)
C20.18549 (16)0.14270 (16)0.35218 (8)0.0168 (3)
C210.21170 (19)0.00213 (17)0.42256 (9)0.0235 (3)
H2110.339 (2)0.037 (2)0.4228 (10)0.028 (4)*
H2120.131 (3)0.095 (3)0.4074 (12)0.037 (5)*
H2130.179 (2)0.044 (3)0.4806 (12)0.040 (5)*
C220.02050 (19)0.1768 (2)0.33204 (11)0.0278 (3)
H2210.039 (3)0.273 (2)0.2898 (13)0.034 (5)*
H2220.069 (2)0.063 (3)0.3105 (11)0.040 (5)*
H2230.082 (3)0.215 (2)0.3860 (13)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0308 (2)0.0184 (2)0.0136 (2)0.00484 (12)0.00665 (14)0.00041 (11)
O0.0656 (8)0.0339 (6)0.0132 (5)0.0071 (5)0.0000 (5)0.0014 (4)
O10.0224 (4)0.0161 (4)0.0131 (4)0.0004 (3)0.0037 (3)0.0011 (3)
C10.0160 (5)0.0173 (5)0.0123 (5)0.0012 (4)0.0002 (4)0.0012 (4)
C110.0167 (6)0.0305 (7)0.0235 (7)0.0014 (5)0.0050 (5)0.0027 (5)
C120.0271 (6)0.0195 (6)0.0175 (6)0.0021 (5)0.0032 (5)0.0034 (5)
O20.0343 (5)0.0159 (4)0.0171 (4)0.0007 (4)0.0071 (4)0.0023 (3)
C20.0175 (5)0.0169 (5)0.0162 (5)0.0005 (4)0.0027 (4)0.0012 (4)
C210.0282 (6)0.0194 (6)0.0232 (7)0.0016 (5)0.0061 (5)0.0051 (5)
C220.0173 (6)0.0290 (7)0.0368 (8)0.0047 (5)0.0031 (5)0.0009 (6)
Geometric parameters (Å, º) top
P—O1.4596 (12)C12—H1231.00 (2)
P—H1.28 (2)C1—C21.5582 (16)
P—O11.5812 (10)O2—C21.4850 (14)
P—O21.5827 (10)C2—C211.5115 (16)
O1—C11.4806 (14)C2—C221.5196 (16)
C1—C121.5137 (16)C21—H2110.96 (2)
C1—C111.5216 (16)C21—H2120.96 (2)
C11—H1110.95 (2)C21—H2130.96 (2)
C11—H1120.98 (2)C22—H2210.98 (2)
C11—H1130.98 (2)C22—H2220.98 (2)
C12—H1211.00 (2)C22—H2230.97 (2)
C12—H1220.92 (2)
O—P—O1115.26 (6)H121—C12—H122106 (2)
O—P—O2118.08 (6)H121—C12—H123113 (2)
O—P—H112.0 (8)H122—C12—H123109 (2)
O1—P—O298.44 (6)C2—O2—P111.37 (7)
O1—P—H106.9 (8)O2—C2—C21106.99 (10)
O2—P—H104.7 (8)O2—C2—C22107.82 (10)
C1—O1—P110.52 (7)C21—C2—C22111.57 (10)
O1—C1—C11108.09 (10)O2—C2—C1102.73 (9)
O1—C1—C12106.74 (10)C21—C2—C1114.22 (10)
C12—C1—C11111.25 (10)C22—C2—C1112.75 (10)
O1—C1—C2102.66 (9)C2—C21—H211109.1 (12)
C11—C1—C2112.83 (10)C2—C21—H212107.7 (12)
C12—C1—C2114.52 (10)C2—C21—H213112.1 (12)
C1—C11—H111111.0 (12)H211—C21—H212109 (2)
C1—C11—H112108.7 (12)H211—C21—H213110 (2)
C1—C11—H113110.5 (12)H212—C21—H213109 (2)
H111—C11—H112109 (2)C2—C22—H221112.1 (12)
H111—C11—H113110 (2)C2—C22—H222104.5 (12)
H112—C11—H113108 (2)C2—C22—H223109.4 (12)
C1—C12—H121111.4 (12)H221—C22—H222113 (2)
C1—C12—H122109.0 (12)H221—C22—H223105 (2)
C1—C12—H123108.5 (12)H222—C22—H223112 (2)
O—P—O1—C1143.16 (9)O1—C1—C2—O237.31 (10)
O2—P—O1—C116.56 (8)C11—C1—C2—O278.79 (12)
P—O1—C1—C1185.34 (8)C12—C1—C2—O2152.58 (12)
P—O1—C1—C12154.89 (10)O1—C1—C2—C21152.79 (10)
P—O1—C1—C234.11 (10)C11—C1—C2—C2136.69 (12)
O—P—O2—C2116.09 (9)C12—C1—C2—C2191.94 (12)
O1—P—O2—C28.52 (8)O1—C1—C2—C2278.47 (10)
P—O2—C2—C21149.19 (8)C11—C1—C2—C22165.44 (12)
P—O2—C2—C2290.67 (10)C12—C1—C2—C2236.80 (12)
P—O2—C2—C128.61 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H113···Oi0.98 (2)2.70 (2)3.583 (2)150 (2)
C12—H123···Oi1.00 (2)2.60 (2)3.499 (2)150 (2)
C21—H213···Oi0.96 (2)2.68 (2)3.544 (2)148 (2)
C22—H222···O1ii0.98 (2)2.64 (2)3.515 (2)148 (2)
P—H···O1iii1.28 (2)2.58 (2)3.4713 (12)124 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H13O3P
Mr164.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.144 (2), 7.570 (2), 15.064 (4)
β (°) 90.98 (2)
V3)814.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.33 × 0.27 × 0.26
Data collection
DiffractometerKuma KM-4
diffractometer with CCD detector
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.910, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
7254, 1869, 1673
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.10
No. of reflections1869
No. of parameters143
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.49, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H113···Oi0.98 (2)2.70 (2)3.583 (2)150 (2)
C12—H123···Oi1.00 (2)2.60 (2)3.499 (2)150 (2)
C21—H213···Oi0.96 (2)2.68 (2)3.544 (2)148 (2)
C22—H222···O1ii0.98 (2)2.64 (2)3.515 (2)148 (2)
P—H···O1iii1.28 (2)2.58 (2)3.4713 (12)124 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was partially supported by the Polish Ministry of Science and Higher Education through grant No. N204 028538. The financial support is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBeletskaya, I. P. & Cheprakov, A. V. (2000). Chem. Rev. 100, 3009–3066.  Web of Science CrossRef PubMed CAS
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationMaffei, M. & Buono, G. (2003). Tetrahedron, 59, 8821–8825.  Web of Science CrossRef CAS
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSkarżyńska, A., Trzeciak, A. M. & Siczek, M. (2011). Inorg. Chim. Acta, 365, 204–210.
First citationZwierzak, A. (1967). Can. J. Chem. 45, 2501–2512.  CrossRef CAS Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds