organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,7,8,9,10,10-Hexa­chloro-4-(thio­phen-2-ylmeth­yl)-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-ene-3,5-dione

aCAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605014, India, and cCentre for Bioinformatics, Pondicherry University, Pondicherry 605014, India
*Correspondence e-mail: gunaunom@gmail.com

(Received 21 July 2011; accepted 12 August 2011; online 27 August 2011)

In the title compound, C14H7Cl6NO2S, the six-membered ring of the aza­tricyclo system has a boat conformation whereas the five-membered rings have an envelope conformation. The thio­phene ring and the ring of the succinimide moiety enclose a dihedral angle of 67.2 (1)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological activity of cyclic imides, see: Duarte et al. (2006[Duarte, F. S., Andrade, E. S., Vieira, R. A., Uieara, M., de Nunes, R. J. & Lima, T. C. M. (2006). Bioorg. Med. Chem. 14, 5397-5401.]); Nakamura et al. (2006[Nakamura, T., Noguchi, T., Kobayashi, H., Miyachi, H. & Hashimoto, Y. (2006). Chem. Pharm. Bull. 54, 1709-1714.]); Stefańska et al. (2010[Stefańska, J., Bielenica, A., Struga, M., Tyski, S., Kossakowski, J., Colla, P. L., Tamburini, E. & Loddo, R. (2010). Ann. Microbiol. 60, 151-155.]).

[Scheme 1]

Experimental

Crystal data
  • C14H7Cl6NO2S

  • Mr = 465.97

  • Tetragonal, I 41 /a

  • a = 23.8136 (10) Å

  • c = 12.6240 (9) Å

  • V = 7158.9 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm Is this OK?

Data collection
  • Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.978, Tmax = 0.984

  • 8488 measured reflections

  • 4156 independent reflections

  • 2283 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.075

  • S = 0.82

  • 4156 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.98 2.54 3.064 (3) 113
C6—H6⋯O2i 0.98 2.51 3.042 (3) 114
Symmetry code: (i) [y-{\script{1\over 4}}, -x+{\script{7\over 4}}, z-{\script{1\over 4}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azatricyclo dec-8-ene 3,5 dione derivatives have anti bacterial and anti fungal activities with other important biological activities (Stefańska et al., 2010).

In these structure, the six-membered ring of the norbornene moiety adopts a boat conformation whereas the two five-membered rings adopt envelope conformation.The fusion at atoms C6 and C2 is in cis conformation. The planarity around N4 and C3—N4 [1.38 (4) Å] and N4—C5 [1.38 (4) Å] reveals the partial double bond charater to facilitate the electron delocalization from one keto oxygen to other through N4. The crystal structure is stabilized by weak inter-molecular C-H···O interactions.

Related literature top

The interest in cyclic imides is due to their biological activity and wide application in the pharmaceutical industry (Duarte et al., 2006; Nakamura et al., 2006; Stefańska et al., 2010).

Experimental top

1-(thiophen-2-yl)methanamine (1 equiv) and 1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboxylic anhydride (1 equiv) were stirred at room temperature in dry ethyl acetate for 30 min. Ethyl acetate was removed under reduced pressure; the resulting residue was dissolved in toluene. To this reaction mixture was added acetyl chloride (5 equiv) and refluxed for 1 h. The reaction mixture was brought to room temperature and washed with aqueous Na2CO3 and dried over anhydrous Na2SO4. Filtered and concentrated under reduced pressure followed by silica gel column purification afforded the imide, 1,7,8,9,10,10-Hexachloro-4-(thiophen-2-yl-methyl)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione, in 92% yield as colorless solid.

Refinement top

The hydrogen atoms were positioned geometrically and refined using a riding model.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of the compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram.
1,7,8,9,10,10-Hexachloro-4-(thiophen-2-ylmethyl)-4- azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione top
Crystal data top
C14H7Cl6NO2SF(000) = 3712
Mr = 465.97Dx = 1.729 Mg m3
Tetragonal, I41/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 4adµ = 1.08 mm1
a = 23.8136 (10) ÅT = 293 K
c = 12.6240 (9) ÅTetragonal, colourless
V = 7158.9 (7) Å30.20 × 0.20 × 0.20 mm
Z = 16
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4156 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 15.9821 pixels mm-1θmax = 29.2°, θmin = 3.0°
ω scansh = 2916
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2832
Tmin = 0.978, Tmax = 0.984l = 1517
8488 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0329P)2]
where P = (Fo2 + 2Fc2)/3
4156 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H7Cl6NO2SZ = 16
Mr = 465.97Mo Kα radiation
Tetragonal, I41/aµ = 1.08 mm1
a = 23.8136 (10) ÅT = 293 K
c = 12.6240 (9) Å0.20 × 0.20 × 0.20 mm
V = 7158.9 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4156 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2283 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.032
8488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.82Δρmax = 0.31 e Å3
4156 reflectionsΔρmin = 0.31 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60327 (10)1.16190 (10)0.08398 (18)0.0301 (6)
C20.66296 (9)1.13668 (9)0.09872 (19)0.0295 (6)
H20.68641.14220.03580.035*
C30.69158 (10)1.15740 (10)0.1978 (2)0.0326 (6)
C50.67499 (10)1.06286 (10)0.2282 (2)0.0344 (6)
C60.65133 (9)1.07395 (9)0.11968 (18)0.0288 (6)
H60.66901.05000.06600.035*
C70.58607 (9)1.07054 (9)0.11446 (18)0.0276 (5)
C80.56310 (9)1.10361 (10)0.20743 (17)0.0291 (6)
C90.57323 (9)1.15729 (10)0.18980 (18)0.0285 (6)
C100.57402 (9)1.11314 (11)0.02405 (18)0.0342 (6)
C110.72133 (10)1.11804 (11)0.3724 (2)0.0432 (7)
H11A0.70541.08970.41870.052*
H11B0.71161.15460.40090.052*
C120.78385 (11)1.11200 (10)0.37121 (19)0.0391 (7)
C130.82275 (11)1.15206 (11)0.3454 (2)0.0485 (8)
H130.81401.18880.32690.058*
C140.87777 (12)1.13051 (13)0.3504 (2)0.0617 (9)
H140.90941.15200.33550.074*
C150.88049 (12)1.07617 (13)0.3788 (2)0.0573 (8)
H150.91371.05590.38570.069*
N40.69675 (8)1.11223 (8)0.26664 (16)0.0321 (5)
O10.70632 (7)1.20435 (7)0.21805 (15)0.0486 (5)
O20.67518 (8)1.01900 (7)0.27599 (16)0.0550 (5)
S0.81534 (3)1.04915 (3)0.40044 (6)0.0562 (2)
Cl10.60119 (3)1.22738 (3)0.02283 (6)0.0557 (2)
Cl20.55865 (3)1.00296 (3)0.09833 (6)0.0508 (2)
Cl30.53529 (3)1.07338 (3)0.31710 (6)0.0528 (2)
Cl40.56334 (3)1.21203 (3)0.27281 (6)0.0553 (2)
Cl50.50195 (3)1.12482 (3)0.00103 (6)0.0524 (2)
Cl60.60575 (3)1.09588 (3)0.09771 (5)0.0593 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (13)0.0306 (13)0.0303 (14)0.0027 (11)0.0006 (11)0.0069 (11)
C20.0227 (12)0.0304 (13)0.0353 (14)0.0024 (11)0.0064 (11)0.0025 (11)
C30.0210 (12)0.0312 (14)0.0456 (17)0.0027 (12)0.0021 (12)0.0004 (13)
C50.0246 (13)0.0282 (14)0.0502 (17)0.0013 (11)0.0019 (12)0.0016 (13)
C60.0233 (12)0.0267 (12)0.0363 (15)0.0006 (11)0.0046 (11)0.0074 (11)
C70.0259 (12)0.0271 (13)0.0300 (14)0.0056 (11)0.0008 (11)0.0045 (11)
C80.0221 (12)0.0384 (14)0.0269 (14)0.0004 (12)0.0030 (10)0.0015 (12)
C90.0239 (12)0.0318 (14)0.0298 (14)0.0080 (12)0.0016 (11)0.0028 (11)
C100.0250 (13)0.0519 (16)0.0258 (13)0.0007 (13)0.0012 (11)0.0058 (12)
C110.0458 (16)0.0434 (16)0.0404 (17)0.0009 (14)0.0096 (14)0.0005 (13)
C120.0431 (16)0.0383 (15)0.0358 (16)0.0025 (14)0.0143 (13)0.0004 (13)
C130.0452 (17)0.0378 (16)0.062 (2)0.0073 (15)0.0266 (15)0.0034 (14)
C140.0424 (18)0.065 (2)0.078 (2)0.0156 (18)0.0232 (16)0.0116 (19)
C150.0419 (17)0.067 (2)0.064 (2)0.0061 (17)0.0172 (15)0.0063 (17)
N40.0287 (11)0.0289 (11)0.0388 (13)0.0024 (10)0.0077 (10)0.0019 (10)
O10.0490 (11)0.0291 (10)0.0678 (14)0.0106 (9)0.0153 (10)0.0003 (9)
O20.0545 (12)0.0307 (10)0.0798 (16)0.0019 (10)0.0175 (11)0.0179 (10)
S0.0603 (5)0.0458 (4)0.0625 (5)0.0053 (4)0.0086 (4)0.0148 (4)
Cl10.0628 (5)0.0437 (4)0.0607 (5)0.0027 (4)0.0044 (4)0.0242 (4)
Cl20.0489 (4)0.0382 (4)0.0653 (5)0.0164 (3)0.0050 (4)0.0117 (3)
Cl30.0537 (4)0.0620 (5)0.0427 (4)0.0081 (4)0.0166 (4)0.0107 (4)
Cl40.0606 (5)0.0437 (4)0.0617 (5)0.0095 (4)0.0148 (4)0.0194 (4)
Cl50.0325 (3)0.0753 (5)0.0494 (4)0.0002 (4)0.0142 (3)0.0020 (4)
Cl60.0611 (5)0.0861 (6)0.0308 (4)0.0023 (5)0.0084 (4)0.0126 (4)
Geometric parameters (Å, º) top
C1—C91.519 (3)C8—C91.320 (3)
C1—C101.551 (3)C8—Cl31.695 (2)
C1—C21.554 (3)C9—Cl41.689 (2)
C1—Cl11.741 (2)C10—Cl61.761 (2)
C2—C31.508 (3)C10—Cl51.763 (2)
C2—C61.542 (3)C11—N41.464 (3)
C2—H20.9800C11—C121.496 (3)
C3—O11.199 (3)C11—H11A0.9700
C3—N41.388 (3)C11—H11B0.9700
C5—O21.206 (3)C12—C131.369 (3)
C5—N41.374 (3)C12—S1.714 (3)
C5—C61.504 (3)C13—C141.409 (4)
C6—C71.558 (3)C13—H130.9300
C6—H60.9800C14—C151.344 (4)
C7—C81.516 (3)C14—H140.9300
C7—C101.554 (3)C15—S1.701 (3)
C7—Cl21.749 (2)C15—H150.9300
C9—C1—C1099.40 (18)C7—C8—Cl3123.56 (17)
C9—C1—C2107.31 (18)C8—C9—C1107.72 (19)
C10—C1—C2100.37 (18)C8—C9—Cl4128.13 (19)
C9—C1—Cl1116.18 (16)C1—C9—Cl4123.74 (18)
C10—C1—Cl1116.20 (16)C1—C10—C792.72 (17)
C2—C1—Cl1115.16 (16)C1—C10—Cl6114.06 (17)
C3—C2—C6104.81 (19)C7—C10—Cl6114.17 (17)
C3—C2—C1112.73 (19)C1—C10—Cl5113.56 (17)
C6—C2—C1103.33 (17)C7—C10—Cl5113.82 (16)
C3—C2—H2111.8Cl6—C10—Cl5108.10 (12)
C6—C2—H2111.8N4—C11—C12112.3 (2)
C1—C2—H2111.8N4—C11—H11A109.1
O1—C3—N4124.3 (2)C12—C11—H11A109.1
O1—C3—C2127.9 (2)N4—C11—H11B109.1
N4—C3—C2107.8 (2)C12—C11—H11B109.1
O2—C5—N4124.2 (2)H11A—C11—H11B107.9
O2—C5—C6127.5 (2)C13—C12—C11127.5 (2)
N4—C5—C6108.2 (2)C13—C12—S111.32 (19)
C5—C6—C2105.01 (19)C11—C12—S121.1 (2)
C5—C6—C7113.76 (19)C12—C13—C14111.4 (2)
C2—C6—C7102.84 (18)C12—C13—H13124.3
C5—C6—H6111.6C14—C13—H13124.3
C2—C6—H6111.6C15—C14—C13114.0 (3)
C7—C6—H6111.6C15—C14—H14123.0
C8—C7—C1099.38 (18)C13—C14—H14123.0
C8—C7—C6107.48 (18)C14—C15—S111.3 (2)
C10—C7—C6100.44 (17)C14—C15—H15124.4
C8—C7—Cl2115.70 (16)S—C15—H15124.4
C10—C7—Cl2116.52 (16)C5—N4—C3114.1 (2)
C6—C7—Cl2115.18 (16)C5—N4—C11123.7 (2)
C9—C8—C7107.86 (19)C3—N4—C11122.2 (2)
C9—C8—Cl3128.35 (19)C15—S—C1291.96 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.982.543.064 (3)113
C6—H6···O2i0.982.513.042 (3)114
Symmetry code: (i) y1/4, x+7/4, z1/4.

Experimental details

Crystal data
Chemical formulaC14H7Cl6NO2S
Mr465.97
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)23.8136 (10), 12.6240 (9)
V3)7158.9 (7)
Z16
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8488, 4156, 2283
Rint0.032
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.075, 0.82
No. of reflections4156
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.982.543.064 (3)113.3
C6—H6···O2i0.982.513.042 (3)114.2
Symmetry code: (i) y1/4, x+7/4, z1/4.
 

Acknowledgements

CRR is grateful to the DST–FIST single-crystal X-ray facility of the Department of Chemistry, Pondicherry University, Pondicherry.

References

First citationDuarte, F. S., Andrade, E. S., Vieira, R. A., Uieara, M., de Nunes, R. J. & Lima, T. C. M. (2006). Bioorg. Med. Chem. 14, 5397–5401.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNakamura, T., Noguchi, T., Kobayashi, H., Miyachi, H. & Hashimoto, Y. (2006). Chem. Pharm. Bull. 54, 1709–1714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStefańska, J., Bielenica, A., Struga, M., Tyski, S., Kossakowski, J., Colla, P. L., Tamburini, E. & Loddo, R. (2010). Ann. Microbiol. 60, 151–155.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds