organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hy­dr­oxy-3-phenyl-5-tri­fluoro­meth­yl-4,5-di­hydro-1H-pyrazole

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 August 2011; accepted 18 August 2011; online 27 August 2011)

The five-membered dihydro­pyrazole ring in the title compound, C10H9F3N2O, is approximately planar (r.m.s. deviation 0.111 Å for all non-H atoms) and its phenyl substituent is aligned at an angle of 14.7 (2)°. Adjacent mol­ecules are linked by N—H⋯O and O—H⋯N hydrogen bonds, generating ribbons running along the b axis of the monoclinic unit cell.

Related literature

For the synthesis, see: Yakimovich et al. (2002[Yakimovich, S. I., Alekseev, V. V. & Zerova, E. V. (2002). Chem. Heterocycl. Compd. 38, 668-676.]); Zelenin et al. (1995[Zelenin, K. N., Alekseyev, V. V., Tygysheva, A. R. & Yakimovitch, S. I. (1995). Tetrahedron, 51, 11251-11256.]). For two related structures, see: Dias & Goh (2004[Dias, H. V. R. & Goh, T. K. H. H. (2004). Polyhedron, 23, 273-282.]); Yang & Raptis (2003[Yang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem. 40, 659-664.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9F3N2O

  • Mr = 230.19

  • Monoclinic, P 21

  • a = 9.1000 (6) Å

  • b = 5.4032 (3) Å

  • c = 10.4515 (7) Å

  • β = 108.139 (7)°

  • V = 488.35 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.972, Tmax = 0.986

  • 4222 measured reflections

  • 1230 independent reflections

  • 1060 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.087

  • S = 1.05

  • 1230 reflections

  • 153 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.84 (1) 2.03 (2) 2.833 (3) 162 (4)
N2—H2⋯O1ii 0.88 (1) 2.13 (2) 2.974 (3) 161 (3)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We had intended to synthesize 5-phenyl-3-(trifluoromethyl)pyrazole, whose crystal structure has been reported (Dias & Goh, 2004). However, the strongly electron-withdrawing nature of the α,β-diketone used in the synthesis led to the isolation of a stable intermediate, a dihydropyrazole (Scheme I), that when dehydrated, should furnish the pyrazole. The synthesis of the dihydropyrazole has previously been reported (Yakimovich et al., 2002; Zelenin et al., 1995). The five-membered dihydropyrazole ring of C10H9F3N2O is approximately planar, the ring being buckled at the methylene carbon, and its phenyl substituent is aligned at 14.7 (2)° (Fig. 1). Adjacent molecules are linked by N—H···O and O—H···N hydrogen bonds (Table 1) to generate a helical chain running along the b axis of the monoclinic unit cell (Fig. 2).

The crystal structure of the 2-naphthyl substituted analog has been reported (Yang & Raptis, 2003); both compounds should similar hydrogen-bonding features.

Related literature top

For the synthesis, see: Yakimovich et al. (2002); Zelenin et al. (1995). For two related structures, see: Dias & Goh (2004); Yang & Raptis (2003).

Experimental top

4,4,4-Trifluoro-1-phenyl-1,3-butanedione (10 mmol) in ethanol (50 ml) was refluxed with hydrazine hydrate (10 mmol) for 4 h. Water was added to precipitate the product, which was collected and recrystallized from ethanol; m.p. 415–416 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined isotropically with distance restraints of N—H 0.88 (1) Å and O—H 0.84 (1) Å.

In the absence of anomalous scatterers, 727 Friedel pairs were merged.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C10H9F3N2O at the 70% probability level; H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded ribbon structure.
5-Hydroxy-3-phenyl-5-trifluoromethyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C10H9F3N2OF(000) = 236
Mr = 230.19Dx = 1.565 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1825 reflections
a = 9.1000 (6) Åθ = 2.4–29.2°
b = 5.4032 (3) ŵ = 0.14 mm1
c = 10.4515 (7) ÅT = 100 K
β = 108.139 (7)°Prism, colourless
V = 488.35 (5) Å30.20 × 0.15 × 0.10 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
1230 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1060 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 66
Tmin = 0.972, Tmax = 0.986l = 1313
4222 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.1359P]
where P = (Fo2 + 2Fc2)/3
1230 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.29 e Å3
3 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H9F3N2OV = 488.35 (5) Å3
Mr = 230.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.1000 (6) ŵ = 0.14 mm1
b = 5.4032 (3) ÅT = 100 K
c = 10.4515 (7) Å0.20 × 0.15 × 0.10 mm
β = 108.139 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
1230 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1060 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.986Rint = 0.039
4222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
1230 reflectionsΔρmin = 0.26 e Å3
153 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.15155 (18)0.5006 (3)0.41240 (17)0.0224 (4)
F20.07047 (18)0.8747 (4)0.36876 (17)0.0275 (4)
F30.27744 (19)0.7556 (3)0.32684 (15)0.0239 (4)
O10.4291 (2)0.6574 (4)0.59470 (19)0.0147 (4)
H10.407 (4)0.534 (5)0.634 (4)0.045 (12)*
N10.3514 (3)1.1846 (4)0.6715 (2)0.0148 (5)
N20.3409 (3)1.0670 (4)0.5493 (2)0.0147 (5)
H20.425 (2)1.094 (6)0.526 (3)0.026 (9)*
C10.2622 (3)1.1255 (5)0.8657 (3)0.0147 (6)
C20.1637 (3)0.9892 (6)0.9190 (3)0.0177 (6)
H2A0.10480.85650.86880.021*
C30.1519 (3)1.0472 (6)1.0446 (3)0.0209 (6)
H30.08600.95281.08070.025*
C40.2358 (3)1.2421 (6)1.1175 (3)0.0226 (7)
H40.22781.28091.20370.027*
C50.3317 (3)1.3813 (6)1.0650 (3)0.0212 (6)
H50.38791.51671.11480.025*
C60.3455 (3)1.3230 (5)0.9398 (3)0.0188 (6)
H60.41191.41790.90450.023*
C70.2782 (3)1.0531 (5)0.7351 (3)0.0144 (6)
C80.2110 (3)0.8206 (5)0.6601 (3)0.0141 (6)
H8A0.09790.83470.61690.017*
H8B0.23380.67380.71970.017*
C90.2974 (3)0.8121 (5)0.5561 (3)0.0140 (6)
C100.1981 (3)0.7364 (5)0.4152 (3)0.0167 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0249 (9)0.0185 (9)0.0224 (8)0.0067 (7)0.0054 (7)0.0054 (7)
F20.0243 (9)0.0285 (10)0.0233 (9)0.0091 (8)0.0019 (7)0.0000 (8)
F30.0318 (9)0.0273 (10)0.0154 (8)0.0024 (8)0.0116 (7)0.0015 (7)
O10.0157 (9)0.0121 (10)0.0179 (10)0.0015 (8)0.0073 (8)0.0027 (8)
N10.0202 (12)0.0116 (11)0.0136 (11)0.0025 (9)0.0068 (9)0.0018 (9)
N20.0204 (12)0.0094 (11)0.0181 (11)0.0013 (10)0.0116 (9)0.0008 (9)
C10.0162 (12)0.0127 (14)0.0148 (13)0.0027 (11)0.0045 (10)0.0019 (11)
C20.0196 (13)0.0168 (14)0.0181 (13)0.0000 (12)0.0079 (11)0.0017 (11)
C30.0241 (14)0.0242 (17)0.0173 (14)0.0020 (13)0.0107 (12)0.0030 (13)
C40.0278 (15)0.0247 (17)0.0151 (13)0.0054 (14)0.0065 (11)0.0013 (13)
C50.0220 (14)0.0196 (15)0.0212 (15)0.0026 (13)0.0054 (12)0.0042 (12)
C60.0190 (13)0.0170 (15)0.0202 (14)0.0016 (12)0.0059 (11)0.0000 (12)
C70.0138 (12)0.0120 (13)0.0173 (13)0.0011 (11)0.0048 (10)0.0003 (11)
C80.0163 (12)0.0129 (15)0.0156 (13)0.0001 (11)0.0086 (10)0.0000 (11)
C90.0145 (12)0.0130 (15)0.0155 (13)0.0013 (11)0.0061 (10)0.0002 (11)
C100.0209 (14)0.0141 (15)0.0154 (13)0.0002 (12)0.0061 (10)0.0007 (12)
Geometric parameters (Å, º) top
F1—C101.340 (3)C2—H2A0.9500
F2—C101.338 (3)C3—C41.382 (4)
F3—C101.342 (3)C3—H30.9500
O1—C91.413 (3)C4—C51.387 (4)
O1—H10.836 (10)C4—H40.9500
N1—C71.290 (3)C5—C61.389 (4)
N1—N21.403 (3)C5—H50.9500
N2—C91.441 (4)C6—H60.9500
N2—H20.882 (10)C7—C81.505 (4)
C1—C61.396 (4)C8—C91.528 (4)
C1—C21.403 (4)C8—H8A0.9900
C1—C71.471 (4)C8—H8B0.9900
C2—C31.386 (4)C9—C101.524 (4)
C9—O1—H1107 (3)C1—C6—H6119.9
C7—N1—N2108.6 (2)N1—C7—C1123.2 (3)
N1—N2—C9109.3 (2)N1—C7—C8112.5 (2)
N1—N2—H2111 (2)C1—C7—C8124.3 (2)
C9—N2—H2116 (2)C7—C8—C9100.4 (2)
C6—C1—C2119.0 (3)C7—C8—H8A111.7
C6—C1—C7121.7 (3)C9—C8—H8A111.7
C2—C1—C7119.3 (3)C7—C8—H8B111.7
C3—C2—C1120.4 (3)C9—C8—H8B111.7
C3—C2—H2A119.8H8A—C8—H8B109.5
C1—C2—H2A119.8O1—C9—N2111.0 (2)
C4—C3—C2120.1 (3)O1—C9—C10108.2 (2)
C4—C3—H3120.0N2—C9—C10107.4 (2)
C2—C3—H3120.0O1—C9—C8113.2 (2)
C3—C4—C5120.2 (3)N2—C9—C8102.5 (2)
C3—C4—H4119.9C10—C9—C8114.4 (2)
C5—C4—H4119.9F2—C10—F1106.9 (2)
C4—C5—C6120.1 (3)F2—C10—F3107.4 (2)
C4—C5—H5119.9F1—C10—F3107.0 (2)
C6—C5—H5119.9F2—C10—C9112.8 (2)
C5—C6—C1120.2 (3)F1—C10—C9111.4 (2)
C5—C6—H6119.9F3—C10—C9111.1 (2)
C7—N1—N2—C918.0 (3)C1—C7—C8—C9166.2 (2)
C6—C1—C2—C31.3 (4)N1—N2—C9—O195.1 (2)
C7—C1—C2—C3177.2 (2)N1—N2—C9—C10146.8 (2)
C1—C2—C3—C40.8 (4)N1—N2—C9—C825.9 (3)
C2—C3—C4—C50.3 (4)C7—C8—C9—O196.5 (2)
C3—C4—C5—C61.0 (4)C7—C8—C9—N223.0 (2)
C4—C5—C6—C10.5 (4)C7—C8—C9—C10138.9 (2)
C2—C1—C6—C50.6 (4)O1—C9—C10—F2179.4 (2)
C7—C1—C6—C5177.8 (2)N2—C9—C10—F259.5 (3)
N2—N1—C7—C1178.3 (2)C8—C9—C10—F253.5 (3)
N2—N1—C7—C81.3 (3)O1—C9—C10—F160.5 (3)
C6—C1—C7—N110.1 (4)N2—C9—C10—F1179.7 (2)
C2—C1—C7—N1171.5 (2)C8—C9—C10—F166.7 (3)
C6—C1—C7—C8170.4 (2)O1—C9—C10—F358.7 (3)
C2—C1—C7—C88.0 (4)N2—C9—C10—F361.1 (3)
N1—C7—C8—C914.3 (3)C8—C9—C10—F3174.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.84 (1)2.03 (2)2.833 (3)162 (4)
N2—H2···O1ii0.88 (1)2.13 (2)2.974 (3)161 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H9F3N2O
Mr230.19
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)9.1000 (6), 5.4032 (3), 10.4515 (7)
β (°) 108.139 (7)
V3)488.35 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.972, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4222, 1230, 1060
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.087, 1.05
No. of reflections1230
No. of parameters153
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.84 (1)2.03 (2)2.833 (3)162 (4)
N2—H2···O1ii0.88 (1)2.13 (2)2.974 (3)161 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDias, H. V. R. & Goh, T. K. H. H. (2004). Polyhedron, 23, 273–282.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakimovich, S. I., Alekseev, V. V. & Zerova, E. V. (2002). Chem. Heterocycl. Compd. 38, 668–676.  Google Scholar
First citationYang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem. 40, 659–664.  CrossRef CAS Google Scholar
First citationZelenin, K. N., Alekseyev, V. V., Tygysheva, A. R. & Yakimovitch, S. I. (1995). Tetrahedron, 51, 11251–11256.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds