organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3H-1,3-Benzo­thia­zol-2-yl­­idene)­propane­dial

aMoroccan Advanced Science, Innovation and Research (MASCIR) Foundation – INANOTECH, ENSET, Avenue de l'Armée Royale, Madinat El Irfane 10100, Rabat, Morocco, bLaboratoire de Chimie Physique et Minérale, EA4138 Pharmacochimie, Université Victor Ségalen Bordeaux 2, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France, and cLaboratoire de Chimie Organique Hétérocyclique, Faculté des Sciences, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: gbouhfid@yahoo.fr

(Received 29 June 2011; accepted 26 July 2011; online 6 August 2011)

In the title compound, C10H7NO2S, the dihedral angle between the benzimidazole and malonaldehyde group is 1.41 (2)°. An intra­molecular hydrogen bond is formed between the NH group and one of the adjacent carbonyl O atoms. In addition, the NH group forms an inter­molecular hydrogen bond to a symmetry equivalent of this carbonyl O atom, connecting the mol­ecules into centrosymmetric dimers. The structure also contains C—H⋯O inter­molecular inter­actions.

Related literature

For biological activities of benzothia­zole derivatives, see: Mortimer et al. (2006[Mortimer, C. G., Wells, G., Crochard, J.-P., Stone, E. L., Bradshaw, T. D., Stevens, M. G. F. & Westwell, A. D. (2006). J. Med. Chem. 49, 179-185.]); Yoshida et al. (2005[Yoshida, M., Hayakawa, I., Hayashi, N., Agatsuma, T., Oda, Y., Tanzawa, F., Iwasaki, S., Koyama, K., Furukawa, H., Kurakata, Y. & Sugano, Y. (2005). Bioorg. Med. Chem. Lett. 15, 3328-3332.]); Vicini et al. (2003[Vicini, P., Gernonikaki, A., Incerti, M., Busonera, B., Poni, G., Cabras, C. A. & Colla, P. L. (2003). Bioorg. Med. Chem. 11, 4785-4789.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7NO2S

  • Mr = 205.23

  • Monoclinic, P 21 /c

  • a = 8.3927 (10) Å

  • b = 5.0972 (8) Å

  • c = 20.739 (2) Å

  • β = 100.098 (8)°

  • V = 873.4 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.05 mm−1

  • T = 133 K

  • 0.12 × 0.12 × 0.02 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.711, Tmax = 0.942

  • 10660 measured reflections

  • 1569 independent reflections

  • 1475 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.165

  • S = 1.02

  • 1569 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O11 0.88 2.13 2.731 (3) 125
N6—H6⋯O11i 0.88 2.13 2.926 (3) 151
C3—H3⋯O14ii 0.95 2.43 3.297 (4) 152
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y+2, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzothiazole and its derivatives are good candidates that have fluorescent properties and possess diverse biological properties, such as antibacterial, anti-inflammatory and antitumor. (Mortimer et al. (2006); Yoshida et al. (2005); Vicini et al. (2003)). In the present paper, we report the synthesis of 1,3-benzothiazol-2(3H)-ylidenemalonaldehyde using the Vilsmeier reaction. This molecule can be used as a precursor for the synthesis of a variety of fluorescent molecules. The crystal structure of the title compound is characterized by bifurcated hydrogen bonds between the amine and aldehyde groups. The donor atom N6 gives the mean interactions with 2 acceptor atom O11. One is intramolecular (x, y, z) but the other one is intermolecular (1 - x, -y, -z). These interactions form a coplanar dimer around the centre in 1/2, 1/2, 0.5. Atom C3 in the molecule at (x, y, z) acts as a hydrogen-bond donor via atom H3 to atom O14 in the molecule at (2 - x, 2 - y, -z)

Related literature top

For biological activities of benzothiazole derivatives, see: Mortimer et al. (2006); Yoshida et al. (2005); Vicini et al. (2003)).

Experimental top

To N,N-dimethylformamide (2 ml) cooled in an ice bath was added dropwise phosphorus oxychloride (1.6 ml, 17.4 mmol) with stirring at below 5 °C. After this addition, a solution of 2-methybenzothiazole (2.9 mmol, 0.432 g) in DMF (2 ml) was added dropwise. The cooling bath was removed and the reaction mixture was stirred at 80 °C for 12 h. The resulting solution was added to ice-cooled water and made alkaline with NaOH (aq.) solution. The resulting precipitate was collected by filtration after 24 h, dried in air, recrystallized from ethanol, to give 1,3-benzothiazol-2(3H)-ylidenemalonaldehyde as colourless crystals.

Refinement top

Carbon and Nitrogen H-atoms were located from Fourier Fourier synthesis and placed in calculated positions (C—H 0.95 Å, N—H 0.88 Å) and included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (van der Sluis & Spek, 1990; Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis. Dashed lines indicate hydrogen bonds intra and intermolecular interactions.
2-(3H-1,3-Benzothiazol-2-ylidene)propanedial top
Crystal data top
C10H7NO2SF(000) = 424
Mr = 205.23Dx = 1.561 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 1475 reflections
a = 8.3927 (10) Åθ = 7.5–71.9°
b = 5.0972 (8) ŵ = 3.05 mm1
c = 20.739 (2) ÅT = 133 K
β = 100.098 (8)°Plate, colourless
V = 873.4 (2) Å30.12 × 0.12 × 0.02 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1569 independent reflections
Radiation source: micro-focus rotating anode1475 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.082
ω scansθmax = 71.9°, θmin = 7.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 1010
Tmin = 0.711, Tmax = 0.942k = 45
10660 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.098P)2 + 1.503P]
where P = (Fo2 + 2Fc2)/3
1569 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C10H7NO2SV = 873.4 (2) Å3
Mr = 205.23Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.3927 (10) ŵ = 3.05 mm1
b = 5.0972 (8) ÅT = 133 K
c = 20.739 (2) Å0.12 × 0.12 × 0.02 mm
β = 100.098 (8)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1569 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1475 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.942Rint = 0.082
10660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.02Δρmax = 0.60 e Å3
1569 reflectionsΔρmin = 0.45 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6870 (3)0.3667 (6)0.16032 (14)0.0291 (7)
H10.61620.22100.16000.035*
C20.7501 (3)0.4952 (7)0.21783 (13)0.0311 (7)
H20.72160.43660.25780.037*
C30.8986 (3)0.7993 (6)0.16137 (14)0.0272 (6)
H30.97060.94340.16190.033*
C40.8343 (3)0.6732 (6)0.10311 (13)0.0256 (6)
C50.7315 (3)0.4596 (6)0.10291 (13)0.0255 (6)
N60.6804 (3)0.3641 (5)0.03972 (11)0.0248 (6)
H60.61450.22940.03130.030*
C70.7391 (3)0.4926 (6)0.00706 (13)0.0248 (6)
S80.86490 (8)0.74932 (13)0.02434 (3)0.0253 (3)
C90.7044 (3)0.4279 (6)0.07455 (13)0.0267 (7)
C100.6013 (3)0.2122 (6)0.09676 (14)0.0267 (7)
H100.58560.17480.14230.032*
O110.5306 (2)0.0694 (4)0.06329 (9)0.0303 (5)
C120.8543 (4)0.7080 (6)0.21876 (14)0.0308 (7)
H120.89550.79190.25920.037*
C130.7714 (3)0.5777 (6)0.12103 (14)0.0303 (7)
H130.74470.52480.16550.036*
O140.8605 (3)0.7691 (4)0.10910 (11)0.0343 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (13)0.0302 (18)0.0337 (14)0.0004 (12)0.0085 (11)0.0039 (12)
C20.0296 (14)0.037 (2)0.0280 (14)0.0031 (13)0.0094 (11)0.0059 (12)
C30.0231 (13)0.0296 (17)0.0300 (14)0.0009 (12)0.0079 (11)0.0012 (12)
C40.0205 (12)0.0312 (17)0.0266 (13)0.0034 (11)0.0087 (10)0.0026 (12)
C50.0197 (12)0.0278 (17)0.0294 (14)0.0042 (11)0.0052 (10)0.0001 (11)
N60.0200 (11)0.0268 (15)0.0287 (11)0.0004 (10)0.0071 (8)0.0004 (9)
C70.0176 (12)0.0264 (17)0.0318 (14)0.0032 (11)0.0084 (10)0.0007 (11)
S80.0225 (4)0.0277 (5)0.0274 (5)0.0021 (2)0.0090 (3)0.0003 (2)
C90.0213 (13)0.0307 (18)0.0295 (14)0.0040 (11)0.0082 (10)0.0010 (11)
C100.0218 (13)0.0316 (18)0.0277 (14)0.0040 (11)0.0070 (11)0.0002 (11)
O110.0262 (10)0.0315 (13)0.0341 (10)0.0017 (8)0.0083 (8)0.0019 (9)
C120.0295 (15)0.0367 (19)0.0263 (14)0.0045 (12)0.0053 (11)0.0022 (12)
C130.0276 (14)0.0352 (19)0.0303 (14)0.0030 (13)0.0109 (11)0.0003 (12)
O140.0333 (12)0.0377 (15)0.0353 (12)0.0053 (9)0.0151 (9)0.0016 (9)
Geometric parameters (Å, º) top
C1—C21.382 (4)N6—C71.334 (4)
C1—C51.392 (4)N6—H60.8800
C1—H10.9500C7—C91.418 (4)
C2—C121.391 (4)C7—S81.735 (3)
C2—H20.9500C9—C131.421 (4)
C3—C121.388 (4)C9—C101.425 (4)
C3—C41.391 (4)C10—O111.228 (4)
C3—H30.9500C10—H100.9500
C4—C51.388 (4)C12—H120.9500
C4—S81.741 (3)C13—O141.228 (4)
C5—N61.393 (3)C13—H130.9500
C2—C1—C5117.2 (3)C5—N6—H6122.6
C2—C1—H1121.4N6—C7—C9124.4 (3)
C5—C1—H1121.4N6—C7—S8112.0 (2)
C1—C2—C12121.8 (3)C9—C7—S8123.5 (2)
C1—C2—H2119.1C7—S8—C490.23 (13)
C12—C2—H2119.1C7—C9—C13120.5 (3)
C12—C3—C4117.9 (3)C7—C9—C10120.4 (3)
C12—C3—H3121.0C13—C9—C10119.1 (3)
C4—C3—H3121.0O11—C10—C9126.9 (3)
C5—C4—C3120.7 (3)O11—C10—H10116.5
C5—C4—S8111.4 (2)C9—C10—H10116.5
C3—C4—S8127.8 (2)C3—C12—C2120.8 (3)
C4—C5—C1121.6 (3)C3—C12—H12119.6
C4—C5—N6111.4 (2)C2—C12—H12119.6
C1—C5—N6126.9 (3)O14—C13—C9126.2 (3)
C7—N6—C5114.9 (2)O14—C13—H13116.9
C7—N6—H6122.6C9—C13—H13116.9
C5—C1—C2—C120.2 (4)C9—C7—S8—C4179.5 (2)
C12—C3—C4—C51.2 (4)C5—C4—S8—C70.0 (2)
C12—C3—C4—S8178.5 (2)C3—C4—S8—C7179.7 (3)
C3—C4—C5—C11.1 (4)N6—C7—C9—C13179.4 (2)
S8—C4—C5—C1178.7 (2)S8—C7—C9—C131.0 (4)
C3—C4—C5—N6179.7 (3)N6—C7—C9—C100.3 (4)
S8—C4—C5—N60.1 (3)S8—C7—C9—C10179.3 (2)
C2—C1—C5—C40.3 (4)C7—C9—C10—O112.1 (4)
C2—C1—C5—N6178.7 (3)C13—C9—C10—O11177.7 (3)
C4—C5—N6—C70.2 (3)C4—C3—C12—C20.7 (4)
C1—C5—N6—C7178.7 (3)C1—C2—C12—C30.0 (5)
C5—N6—C7—C9179.4 (2)C7—C9—C13—O140.4 (5)
C5—N6—C7—S80.2 (3)C10—C9—C13—O14179.3 (3)
N6—C7—S8—C40.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O110.882.132.731 (3)125
N6—H6···O11i0.882.132.926 (3)151
C3—H3···O14ii0.952.433.297 (4)152
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC10H7NO2S
Mr205.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)133
a, b, c (Å)8.3927 (10), 5.0972 (8), 20.739 (2)
β (°) 100.098 (8)
V3)873.4 (2)
Z4
Radiation typeCu Kα
µ (mm1)3.05
Crystal size (mm)0.12 × 0.12 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.711, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
10660, 1569, 1475
Rint0.082
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.165, 1.02
No. of reflections1569
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.45

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (van der Sluis & Spek, 1990; Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O110.88002.12712.731 (3)125.24
N6—H6···O11i0.88002.12762.926 (3)150.61
C3—H3···O14ii0.95002.42843.297 (4)151.90
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z.
 

References

First citationMortimer, C. G., Wells, G., Crochard, J.-P., Stone, E. L., Bradshaw, T. D., Stevens, M. G. F. & Westwell, A. D. (2006). J. Med. Chem. 49, 179–185.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicini, P., Gernonikaki, A., Incerti, M., Busonera, B., Poni, G., Cabras, C. A. & Colla, P. L. (2003). Bioorg. Med. Chem. 11, 4785–4789.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshida, M., Hayakawa, I., Hayashi, N., Agatsuma, T., Oda, Y., Tanzawa, F., Iwasaki, S., Koyama, K., Furukawa, H., Kurakata, Y. & Sugano, Y. (2005). Bioorg. Med. Chem. Lett. 15, 3328–3332.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds