organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(E)-(2-Fluoro­benzyl­­idene)amino]-2-hy­dr­oxy­benzoic acid

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 31 July 2011; accepted 4 August 2011; online 17 August 2011)

In the title compound, C14H10FNO3, the dihedral angle between the two benzene rings is 32.66 (14)°. An S(6) ring motif is formed due to an intra­molecular O—H⋯O hydrogen bond between the hy­droxy and carbonyl groups. In the crystal, mol­ecules are consolidated into dimers with R22(8) ring motifs by pairs of O—H⋯O hydrogen bonds.

Related literature

For background and related crystal structures, see: Tahir & Shad (2010[Tahir, M. N. & Shad, H. A. (2010). Acta Cryst. E66, o3314.]); Tahir et al. (2010a[Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010a). Acta Cryst. E66, o2672.],b[Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010b). Acta Cryst. E66, o2923.],c[Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010c). Acta Cryst. E66, o2553-o2554.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10FNO3

  • Mr = 259.23

  • Monoclinic, P 21 /n

  • a = 15.5688 (16) Å

  • b = 4.7139 (4) Å

  • c = 16.2248 (16) Å

  • β = 92.412 (4)°

  • V = 1189.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.983

  • 15880 measured reflections

  • 2161 independent reflections

  • 1156 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.01

  • 2161 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.88 (3) 1.77 (3) 2.642 (3) 176 (3)
O3—H3⋯O2 0.92 (3) 1.78 (3) 2.617 (3) 152 (3)
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Recently, we reported crystal structures containing the 5-amino-2-hydroxybenzoic acid moiety i.e. (II) 2-hydroxy-5-[(E)-(1H-indol-3-ylmethylidene)azaniumyl]benzoate (Tahir & Shad, 2010), (III) i.e. 2-{[(E)-1,3-benzodioxol-5-yl]methylideneamino}benzoic acid (Tahir et al., 2010b), (IV) i.e. 5-[(E)-(2,6-dichlorobenzylidene)amino]-2-hydroxybenzoic acid (Tahir et al., 2010a) and (V) i.e. 2-hydroxy-5-{[(E)-4-methoxybenzylidene]azaniumyl}benzoate (Tahir et al., 2010c). The title compound (I), (Fig. 1) was prepared in continuation of the synthesis of various molecules having 5-amino-2-hydroxybenzoic acid.

In (I), group A (C1—C7/N1/O1—O3), derived from 5-amino-2-hydroxybenzoic acid, and group B (C8—C14/F1), derived from 2-fluorobenzaldehyde, are each planar with r.m.s. deviations of 0.0164 and 0.0182 Å, respectively. The A/B dihedral angle between is 32.78 (7)°. There exists an intramolecular O—H···O hydrogen bond which completes a S(6) ring motif (Table 1, Fig. 1). In the crystal packing the molecules are stabilized in the form of dimers due to intermolecular O—H···O hydrogen bonds (Table 1, Fig. 2) which form a R22(8) ring motif (Bernstein et al., 1995).

Related literature top

For background and related crystal structures, see: Tahir & Shad (2010); Tahir et al. (2010a,b,c). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 5-amino-2-hydroxybenzoic acid and 2-fluorobenzaldehyde were refluxed in methanol for 45 min resulting in yellow-brown solution. The solution was kept at room temperature which afforded violet prisms after 48 h.

Refinement top

The coordinates of the hydroxyl-H atoms were refined freely, and with Uiso(H) = 1.2Ueq(O). The C-bound H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line represents the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The partial packing showing that molecules form dimeric aggregates via O—H···O hydrogen bonds (dotted lines).
5-[(E)-(2-Fluorobenzylidene)amino]-2-hydroxybenzoic acid top
Crystal data top
C14H10FNO3F(000) = 536
Mr = 259.23Dx = 1.447 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1156 reflections
a = 15.5688 (16) Åθ = 2.5–25.3°
b = 4.7139 (4) ŵ = 0.11 mm1
c = 16.2248 (16) ÅT = 296 K
β = 92.412 (4)°Prism, violet
V = 1189.7 (2) Å30.30 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2161 independent reflections
Radiation source: fine-focus sealed tube1156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.5°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 55
Tmin = 0.972, Tmax = 0.983l = 1919
15880 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.0687P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2161 reflectionsΔρmax = 0.17 e Å3
179 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C14H10FNO3V = 1189.7 (2) Å3
Mr = 259.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.5688 (16) ŵ = 0.11 mm1
b = 4.7139 (4) ÅT = 296 K
c = 16.2248 (16) Å0.30 × 0.22 × 0.18 mm
β = 92.412 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2161 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1156 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.079
15880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
2161 reflectionsΔρmin = 0.16 e Å3
179 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.52929 (12)0.3124 (5)0.56845 (13)0.1012 (9)
O10.06399 (12)0.7307 (4)0.55258 (12)0.0525 (8)
O20.05067 (11)0.8698 (4)0.42115 (11)0.0495 (7)
O30.14217 (13)0.6175 (4)0.31108 (12)0.0542 (8)
N10.28499 (15)0.0194 (4)0.57191 (14)0.0515 (9)
C10.08505 (17)0.7167 (5)0.47509 (18)0.0417 (10)
C20.15088 (16)0.5080 (5)0.45759 (15)0.0375 (9)
C30.17635 (17)0.4699 (5)0.37661 (17)0.0434 (10)
C40.23883 (18)0.2707 (6)0.36048 (19)0.0519 (11)
C50.27501 (17)0.1124 (6)0.42340 (19)0.0514 (11)
C60.25157 (17)0.1477 (5)0.50467 (18)0.0442 (10)
C70.18911 (17)0.3435 (5)0.52047 (17)0.0432 (9)
C80.3618 (2)0.1094 (6)0.57106 (19)0.0549 (11)
C90.39800 (18)0.2991 (5)0.63403 (18)0.0487 (11)
C100.4808 (2)0.4013 (6)0.6308 (2)0.0584 (11)
C110.5166 (2)0.5910 (7)0.6868 (2)0.0656 (12)
C120.4681 (2)0.6790 (7)0.7506 (2)0.0651 (12)
C130.3861 (2)0.5771 (7)0.7575 (2)0.0671 (12)
C140.35127 (19)0.3924 (6)0.70003 (19)0.0607 (11)
H10.0276 (18)0.869 (6)0.5597 (16)0.0630*
H30.1029 (18)0.734 (6)0.3343 (18)0.0651*
H40.256170.244730.306850.0624*
H50.316340.022480.411630.0618*
H70.171900.366880.574250.0518*
H80.396100.052020.528580.0659*
H110.572270.657800.681500.0788*
H120.490760.807440.789220.0777*
H130.353810.634100.801530.0803*
H140.295290.328040.705280.0729*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0551 (12)0.1469 (19)0.1031 (17)0.0089 (12)0.0211 (12)0.0358 (14)
O10.0594 (14)0.0547 (12)0.0440 (13)0.0135 (10)0.0101 (10)0.0004 (10)
O20.0534 (13)0.0504 (12)0.0450 (12)0.0078 (10)0.0043 (10)0.0038 (10)
O30.0612 (14)0.0565 (13)0.0456 (13)0.0044 (10)0.0096 (10)0.0015 (10)
N10.0474 (16)0.0455 (14)0.0613 (17)0.0035 (12)0.0011 (13)0.0003 (12)
C10.0439 (18)0.0368 (15)0.0443 (18)0.0081 (14)0.0023 (15)0.0009 (14)
C20.0398 (16)0.0336 (14)0.0391 (17)0.0055 (12)0.0034 (13)0.0014 (13)
C30.0431 (17)0.0398 (15)0.0476 (18)0.0057 (14)0.0050 (14)0.0029 (14)
C40.053 (2)0.0519 (18)0.0517 (19)0.0005 (16)0.0132 (16)0.0083 (16)
C50.0437 (18)0.0448 (17)0.066 (2)0.0021 (14)0.0058 (16)0.0085 (16)
C60.0419 (17)0.0376 (15)0.0529 (19)0.0046 (14)0.0009 (14)0.0005 (14)
C70.0454 (17)0.0377 (15)0.0469 (17)0.0032 (13)0.0075 (14)0.0038 (13)
C80.049 (2)0.0498 (17)0.066 (2)0.0056 (15)0.0025 (16)0.0062 (16)
C90.0419 (18)0.0461 (17)0.058 (2)0.0001 (14)0.0006 (15)0.0005 (15)
C100.0444 (19)0.068 (2)0.063 (2)0.0011 (17)0.0061 (17)0.0017 (18)
C110.049 (2)0.078 (2)0.069 (2)0.0194 (18)0.0075 (18)0.0099 (19)
C120.065 (2)0.068 (2)0.061 (2)0.0096 (18)0.0120 (19)0.0010 (17)
C130.056 (2)0.085 (2)0.060 (2)0.0020 (19)0.0019 (17)0.0117 (19)
C140.0460 (19)0.069 (2)0.067 (2)0.0058 (17)0.0003 (17)0.0043 (18)
Geometric parameters (Å, º) top
F1—C101.354 (4)C8—C91.454 (4)
O1—C11.314 (3)C9—C141.391 (4)
O2—C11.239 (3)C9—C101.379 (4)
O3—C31.360 (3)C10—C111.376 (4)
O1—H10.88 (3)C11—C121.371 (5)
O3—H30.92 (3)C12—C131.373 (4)
N1—C61.426 (3)C13—C141.371 (4)
N1—C81.270 (4)C4—H40.9300
C1—C21.457 (4)C5—H50.9300
C2—C71.395 (4)C7—H70.9300
C2—C31.400 (4)C8—H80.9300
C3—C41.385 (4)C11—H110.9300
C4—C51.367 (4)C12—H120.9300
C5—C61.393 (4)C13—H130.9300
C6—C71.373 (4)C14—H140.9300
C1—O1—H1110.7 (17)F1—C10—C9118.1 (3)
C3—O3—H3103.4 (18)F1—C10—C11118.1 (3)
C6—N1—C8119.3 (2)C10—C11—C12118.3 (3)
O1—C1—O2121.9 (2)C11—C12—C13120.0 (3)
O1—C1—C2115.2 (2)C12—C13—C14120.6 (3)
O2—C1—C2122.8 (3)C9—C14—C13121.3 (3)
C1—C2—C3119.9 (2)C3—C4—H4120.00
C3—C2—C7119.1 (2)C5—C4—H4120.00
C1—C2—C7121.0 (2)C4—C5—H5119.00
O3—C3—C4117.0 (2)C6—C5—H5119.00
O3—C3—C2123.4 (2)C2—C7—H7119.00
C2—C3—C4119.6 (2)C6—C7—H7119.00
C3—C4—C5120.0 (3)N1—C8—H8119.00
C4—C5—C6121.7 (3)C9—C8—H8119.00
C5—C6—C7118.2 (3)C10—C11—H11121.00
N1—C6—C7117.8 (2)C12—C11—H11121.00
N1—C6—C5123.8 (2)C11—C12—H12120.00
C2—C7—C6121.4 (3)C13—C12—H12120.00
N1—C8—C9122.4 (3)C12—C13—H13120.00
C10—C9—C14116.0 (3)C14—C13—H13120.00
C8—C9—C10121.6 (3)C9—C14—H14119.00
C8—C9—C14122.4 (3)C13—C14—H14119.00
C9—C10—C11123.7 (3)
C8—N1—C6—C533.0 (4)C4—C5—C6—C71.4 (4)
C8—N1—C6—C7150.8 (3)N1—C6—C7—C2177.6 (2)
C6—N1—C8—C9175.0 (2)C5—C6—C7—C21.3 (4)
O1—C1—C2—C3178.2 (2)N1—C8—C9—C10178.1 (3)
O1—C1—C2—C71.6 (3)N1—C8—C9—C140.8 (4)
O2—C1—C2—C31.4 (4)C8—C9—C10—F12.2 (4)
O2—C1—C2—C7178.8 (2)C8—C9—C10—C11177.0 (3)
C1—C2—C3—O30.6 (4)C14—C9—C10—F1178.9 (3)
C1—C2—C3—C4179.9 (2)C14—C9—C10—C111.9 (4)
C7—C2—C3—O3179.2 (2)C8—C9—C14—C13178.3 (3)
C7—C2—C3—C40.1 (4)C10—C9—C14—C130.6 (4)
C1—C2—C7—C6179.6 (2)F1—C10—C11—C12179.2 (3)
C3—C2—C7—C60.6 (4)C9—C10—C11—C121.6 (5)
O3—C3—C4—C5179.1 (2)C10—C11—C12—C130.2 (5)
C2—C3—C4—C50.2 (4)C11—C12—C13—C141.5 (5)
C3—C4—C5—C60.8 (4)C12—C13—C14—C91.1 (5)
C4—C5—C6—N1177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.88 (3)1.77 (3)2.642 (3)176 (3)
O3—H3···O20.92 (3)1.78 (3)2.617 (3)152 (3)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H10FNO3
Mr259.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.5688 (16), 4.7139 (4), 16.2248 (16)
β (°) 92.412 (4)
V3)1189.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
15880, 2161, 1156
Rint0.079
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.01
No. of reflections2161
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.88 (3)1.77 (3)2.642 (3)176 (3)
O3—H3···O20.92 (3)1.78 (3)2.617 (3)152 (3)
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, former Vice Chancellor, University of Sargodha. Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N. & Shad, H. A. (2010). Acta Cryst. E66, o3314.  Google Scholar
First citationTahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010a). Acta Cryst. E66, o2672.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010b). Acta Cryst. E66, o2923.  Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010c). Acta Cryst. E66, o2553–o2554.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds