organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl-L-leucyl-L-leucine hydro­chloride monohydrate

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China, and bGuangdong Guangya High School, Guangdong 510160, People's Republic of China
*Correspondence e-mail: txush@jnu.edu.cn

(Received 28 June 2011; accepted 2 August 2011; online 27 August 2011)

In the title compound C13H27N2O3+·Cl·H2O, obtained by deprotecting the amino and carboxyl groups of an inter­mediate in the synthesis of the cyclic penta­peptide Galaxamide, a number of hydrogen-bonding inter­actions occur including aminium N—H⋯Cl, amide–carboxyl N—H⋯O, water O—H⋯Cl and carbox­yl–water O—H⋯O associations. The aminium N—H⋯Cl⋯H—N bridging extensions give rise to zigzag chains extending along the a axis, the overall two-dimensional structure lying in the (110) plane.

Related literature

For general background to peptides, see: Humphrey & Chamberlin (1997[Humphrey, J. M. & Chamberlin, A. R. (1997). Chem. Rev. 97, 2243-2266.]). For the synthesis of Galaxamide, see: Xu, Liao, Xu et al. (2008[Xu, W.-J., Liao, X.-J., Xu, S.-H., Diao, J.-Z., Du, B., Zhou, X.-L. & Pan, S.-S. (2008). Org. Lett. 10, 4569-4572.]); Rodriguez et al. (2007[Rodriguez, R. A., Pan, P. S., Pan, C. M., Ravula, S., Lapera, S., Singh, E. K., Styers, T. J., Brown, J. D., Cajica, J., Parry, E., Otrubova, K. & McAlpine, S. R. (2007). J. Org. Chem. 72, 1980-2002.]). For related structures, see: Liao et al. (2007[Liao, X.-J., Xu, W.-J., Xu, S.-H. & Dong, F.-F. (2007). Acta Cryst. E63, o3313.]); Xu, Liao, Diao et al. (2008[Xu, W. J., Liao, X. J., Diao, J. Z., Zhou, L. & Xu, S. H. (2008). Acta Cryst. E64, o2178.]).

[Scheme 1]

Experimental

Crystal data
  • C13H27N2O3+·Cl·H2O

  • Mr = 312.83

  • Monoclinic, P 21

  • a = 5.2212 (2) Å

  • b = 9.6032 (5) Å

  • c = 18.4081 (8) Å

  • β = 96.329 (4)°

  • V = 917.36 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 K

  • 0.45 × 0.32 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.990, Tmax = 1.000

  • 3703 measured reflections

  • 2616 independent reflections

  • 2271 reflections with I > 2sI)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 1.01

  • 2616 reflections

  • 186 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 686 Friedel pairs

  • Flack parameter: −0.01 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.90 2.31 3.174 (2) 161
N1—H1B⋯Cl1 0.90 2.25 3.092 (2) 155
N2—H2⋯O2ii 0.86 2.40 3.006 (3) 128
O3—H3A⋯O4 0.85 1.74 2.591 (5) 179
O4—H4A⋯Cl1iii 0.85 2.51 3.198 (4) 139
O4—H4B⋯Cl1iv 0.85 2.48 3.182 (4) 141
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) x+1, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Peptide compounds play an important role in life activities (Humphrey & Chamberlin, 1997). The title compound C13H27N2O3+ Cl- . H2O (Fig. 1) is a modified dipeptide employed in the synthesis of the cytotoxic cyclic pentapeptide Galaxamide (Xu, Liao, Xu et al., 2008), obtained by deprotecting the amino and carboxyl groups of the intermediate (Rodriguez et al., 2007). The purpose was to explore the activity targets of the intermediates in relation to those of the target compound (Liao et al., 2007, Xu, Liao, Diao et al., 2008). In the crystal structure of the title compound, there are a number of intermolecular hydrogen-bonding interactions (Table 1), including aminium N—H···Cl, amide N—H···Ocarboxyl, water O—H···Cl and carboxylic acid O—H···Owater associations. The aminium N—H···Cl···H—N bridging extensions give zigzag chains extending along the a axis in the unit cell, the overall two-dimensional structure lying along (110) (Fig 2).

Related literature top

For general background to peptides, see: Humphrey & Chamberlin (1997). For the synthesis of Galaxamide, see: Xu, Liao, Xu et al. (2008); Rodriguez et al. (2007). For related structures, see: Liao et al. (2007); Xu, Liao, Diao et al. (2008).

Experimental top

Diisopropylethylamine (DIPEA) (6 mmol, 1.1 ml) was added dropwise to a stirred solution of L-leucine benzyl ester p-toluenesulfonate (6 mmol, 2.36 g) in anhydrous THF (8 ml) at 273 K under nitrogen and stirred for 15 min. The coupling reagent DEPBT (6 mmol, 1.8 g) was added to a stirred solution of N-Boc-Me—L-Leu-OH (5 mmol, 1.30 g) in anhydrous THF (5 ml) at 273 K under nitrogen and the suspension was stirred for 15 min. A suspension of L-leucine benzyl ester p-toluenesulfonate was added by cannula to the N-Boc-Me—L-Leu-OH suspension at 273 K under nitrogen and the mixture was allowed to warm to room temperature over the course of 24 h, then evaporated in vacuo. The crude product was then purified by chromatography on silica using n-hexane/acetone (20:1) as eluent to give the dipeptide as colorless crystals (yield 2.1g: 92.5%). This dipeptide (4 mmol, 1.8 g) was dissolved in CH2Cl2 (7 ml) and 2 ml of TFA was added dropwise at 273 K under nitrogen using a constant pressure funnel. The mixture was stirred at 273 K until the starting material disappeared (monitored by TLC). The solution was concentrated in vacuo, the residue was dissolved in CH2Cl22 and concentrated again to remove the Boc dipeptide derivative which was dried in vacuo. This Boc derivative (3 mmol, 1.91 g) was reduced with hydrogen (0.1 Mpa) and 10% Pd—C (0.62 g) in ethyl acetate (40 ml) until the starting material disappeared (monitored using TLC). The Pd—C was filtered, and the filtrate was concentrated in vacuo to obtain the title compound (yield 1.85 g: 97%). Colourless crystals suitable for X-ray analysis grew over a period of a week from a solution in methanol containing a small amount of dilute HCl, when exposed to air.

Refinement top

The C-bound and O-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with distances 0.96 Å (CH3), 0.97 Å (CH2), 0.98 (CH), or 0.85 Å (OH) and Uiso(H) = 1.2Ueq(C, O) for methine, methylene, hydroxyl and carboxyl H atoms, and Uiso = 1.5Ueq(C) for methyl H atoms. The N H-atoms were located in a difference-Fourier synthesis and then refined as riding on the N atoms with Uiso(H) = 1.2Ueq(N). The known S absolute configuration for L-leucine [(S)-2-amino-4-methylvaleric acid] was invoked for both chiral centres in the title molecule (C1S,C3S).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme. Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Fgure 2. A perspective view of the packing in the unit cell showing the hydrogen-bonding interactions as dashed lines.
N-Methyl-L-leucyl-L-leucine hydrochloride monohydrate top
Crystal data top
C13H27N2O3+·Cl·H2OF(000) = 340
Mr = 312.83Dx = 1.133 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
a = 5.2212 (2) ÅCell parameters from 1351 reflections
b = 9.6032 (5) Åθ = 3.1–29.1°
c = 18.4081 (8) ŵ = 0.22 mm1
β = 96.329 (4)°T = 295 K
V = 917.36 (7) Å3Block, colourless
Z = 20.45 × 0.32 × 0.17 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD
diffractometer
2616 independent reflections
Radiation source: Enhance (Mo) X-ray Source2271 reflections with I > 2s˘I)
Graphite monochromatorRint = 0.015
Detector resolution: 16.0288 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 711
Tmin = 0.990, Tmax = 1.000l = 1922
3703 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.065P)2 + 0.1023P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2616 reflectionsΔρmax = 0.37 e Å3
186 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 686 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
C13H27N2O3+·Cl·H2OV = 917.36 (7) Å3
Mr = 312.83Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.2212 (2) ŵ = 0.22 mm1
b = 9.6032 (5) ÅT = 295 K
c = 18.4081 (8) Å0.45 × 0.32 × 0.17 mm
β = 96.329 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD
diffractometer
2616 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2271 reflections with I > 2s˘I)
Tmin = 0.990, Tmax = 1.000Rint = 0.015
3703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.37 e Å3
S = 1.01Δρmin = 0.22 e Å3
2616 reflectionsAbsolute structure: Flack (1983), 686 Friedel pairs
186 parametersAbsolute structure parameter: 0.01 (8)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9159 (3)0.8611 (2)0.21026 (11)0.0456 (7)
O21.1446 (4)1.1632 (3)0.27116 (12)0.0647 (9)
O30.8114 (4)1.1739 (3)0.18571 (12)0.0609 (8)
N10.5270 (4)0.7595 (3)0.09916 (12)0.0467 (8)
N20.5803 (4)0.9650 (3)0.25512 (13)0.0422 (8)
C10.4995 (5)0.7609 (3)0.17896 (15)0.0407 (9)
C20.6837 (5)0.8673 (3)0.21552 (14)0.0376 (8)
C30.7383 (5)1.0686 (3)0.29656 (15)0.0429 (9)
C40.9252 (5)1.1384 (3)0.24936 (15)0.0451 (9)
C50.5595 (5)0.6146 (4)0.20897 (15)0.0460 (8)
C60.8781 (6)1.0087 (4)0.36714 (16)0.0538 (10)
C70.5536 (5)0.5991 (4)0.29136 (15)0.0477 (9)
C80.7036 (7)0.9642 (5)0.42373 (18)0.0648 (13)
C90.6292 (8)0.4502 (4)0.3139 (2)0.0718 (14)
C100.2924 (7)0.6351 (6)0.3153 (2)0.0761 (14)
C110.8619 (12)0.8836 (9)0.4839 (3)0.124 (3)
C120.5709 (8)1.0854 (7)0.4543 (2)0.0883 (19)
C130.4878 (8)0.8963 (5)0.06236 (19)0.0701 (14)
O41.0969 (8)1.2934 (4)0.09741 (19)0.1200 (16)
Cl10.01614 (13)0.60884 (9)0.04716 (4)0.0580 (3)
H10.322400.786100.186400.0490*
H1A0.685700.728500.092800.0560*
H1B0.412600.698600.077100.0560*
H20.416100.966400.256100.0510*
H30.621601.141200.310700.0520*
H3A0.905701.211900.156800.0730*
H5A0.435900.550100.184300.0550*
H5B0.729000.587800.197000.0550*
H6A0.978300.928800.354800.0640*
H6B0.997801.078200.388900.0640*
H70.681900.662600.316100.0570*
H80.571600.901700.400000.0780*
H9A0.501600.386600.291900.1070*
H9B0.640100.442000.366200.1070*
H9C0.793400.428300.297900.1070*
H10A0.247800.728900.301100.1140*
H10B0.299800.626600.367500.1140*
H10C0.164600.572400.292600.1140*
H11A0.942900.805700.463100.1850*
H11B0.751200.850700.518600.1850*
H11C0.991600.943500.508200.1850*
H12A0.697301.147200.478600.1330*
H12B0.459001.052600.488700.1330*
H12C0.471401.134200.415400.1330*
H13A0.500500.885600.011000.1050*
H13B0.617200.960400.082800.1050*
H13C0.320200.931600.069400.1050*
H4A1.147401.232400.068800.1440*
H4B1.010501.355600.072700.1440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0316 (9)0.0457 (13)0.0607 (12)0.0060 (9)0.0102 (8)0.0027 (11)
O20.0421 (11)0.0755 (19)0.0769 (14)0.0069 (12)0.0078 (10)0.0094 (14)
O30.0645 (13)0.0608 (16)0.0567 (12)0.0036 (13)0.0038 (11)0.0162 (12)
N10.0420 (12)0.0530 (17)0.0443 (13)0.0020 (12)0.0011 (10)0.0028 (12)
N20.0325 (11)0.0422 (15)0.0526 (13)0.0089 (11)0.0075 (10)0.0002 (12)
C10.0340 (12)0.0426 (17)0.0462 (15)0.0045 (13)0.0077 (11)0.0011 (14)
C20.0342 (12)0.0355 (16)0.0434 (14)0.0058 (13)0.0059 (11)0.0057 (13)
C30.0397 (13)0.0399 (18)0.0499 (15)0.0089 (13)0.0081 (12)0.0017 (13)
C40.0446 (15)0.0358 (18)0.0555 (16)0.0064 (14)0.0083 (13)0.0016 (14)
C50.0427 (13)0.0393 (16)0.0551 (15)0.0006 (15)0.0019 (11)0.0009 (16)
C60.0487 (16)0.062 (2)0.0497 (17)0.0062 (16)0.0009 (13)0.0009 (16)
C70.0475 (14)0.0412 (17)0.0535 (15)0.0020 (16)0.0022 (12)0.0052 (16)
C80.073 (2)0.071 (3)0.0502 (17)0.022 (2)0.0056 (16)0.0017 (18)
C90.076 (2)0.050 (2)0.088 (3)0.004 (2)0.003 (2)0.018 (2)
C100.0628 (19)0.092 (3)0.077 (2)0.008 (2)0.0236 (17)0.025 (3)
C110.151 (5)0.144 (6)0.077 (3)0.009 (5)0.018 (3)0.054 (4)
C120.079 (2)0.130 (5)0.060 (2)0.009 (3)0.0255 (18)0.015 (3)
C130.078 (2)0.071 (3)0.059 (2)0.003 (2)0.0021 (18)0.018 (2)
O40.165 (3)0.099 (3)0.099 (2)0.003 (3)0.028 (2)0.015 (2)
Cl10.0507 (4)0.0606 (5)0.0630 (4)0.0075 (4)0.0081 (3)0.0114 (5)
Geometric parameters (Å, º) top
O1—C21.228 (3)C1—H10.9800
O2—C41.195 (3)C3—H30.9800
O3—C41.300 (4)C5—H5B0.9700
O3—H3A0.8500C5—H5A0.9700
O4—H4B0.8500C6—H6A0.9700
O4—H4A0.8500C6—H6B0.9700
N1—C131.482 (5)C7—H70.9800
N1—C11.492 (4)C8—H80.9800
N2—C21.338 (4)C9—H9C0.9600
N2—C31.454 (4)C9—H9B0.9600
N1—H1A0.9000C9—H9A0.9600
N1—H1B0.9000C10—H10B0.9600
N2—H20.8600C10—H10A0.9600
C1—C51.529 (5)C10—H10C0.9600
C1—C21.510 (4)C11—H11B0.9600
C3—C41.531 (4)C11—H11A0.9600
C3—C61.531 (4)C11—H11C0.9600
C5—C71.528 (4)C12—H12B0.9600
C6—C81.519 (5)C12—H12C0.9600
C7—C101.519 (5)C12—H12A0.9600
C7—C91.529 (5)C13—H13C0.9600
C8—C121.496 (7)C13—H13A0.9600
C8—C111.519 (8)C13—H13B0.9600
C4—O3—H3A116.00C3—C6—H6B108.00
H4A—O4—H4B110.00C8—C6—H6A109.00
C1—N1—C13114.8 (3)C3—C6—H6A109.00
C2—N2—C3121.7 (2)H6A—C6—H6B108.00
C1—N1—H1B109.00C8—C6—H6B109.00
C13—N1—H1A108.00C5—C7—H7108.00
H1A—N1—H1B108.00C9—C7—H7108.00
C1—N1—H1A109.00C10—C7—H7108.00
C13—N1—H1B109.00C6—C8—H8108.00
C2—N2—H2119.00C11—C8—H8108.00
C3—N2—H2119.00C12—C8—H8108.00
N1—C1—C2108.6 (2)C7—C9—H9B109.00
N1—C1—C5108.0 (2)C7—C9—H9C110.00
C2—C1—C5111.5 (2)H9A—C9—H9B109.00
O1—C2—C1121.2 (2)H9A—C9—H9C109.00
N2—C2—C1116.2 (2)H9B—C9—H9C109.00
O1—C2—N2122.6 (3)C7—C9—H9A110.00
N2—C3—C6112.2 (3)C7—C10—H10A109.00
C4—C3—C6111.9 (2)C7—C10—H10B109.00
N2—C3—C4111.2 (2)H10A—C10—H10B110.00
O2—C4—C3123.0 (3)H10A—C10—H10C110.00
O3—C4—C3111.7 (2)H10B—C10—H10C109.00
O2—C4—O3125.2 (3)C7—C10—H10C110.00
C1—C5—C7115.0 (3)C8—C11—H11B109.00
C3—C6—C8115.0 (3)C8—C11—H11C109.00
C5—C7—C10112.5 (2)C8—C11—H11A110.00
C9—C7—C10110.3 (3)H11A—C11—H11C109.00
C5—C7—C9109.1 (3)H11B—C11—H11C109.00
C6—C8—C12112.1 (4)H11A—C11—H11B109.00
C11—C8—C12111.1 (4)C8—C12—H12A109.00
C6—C8—C11108.9 (3)C8—C12—H12B109.00
C2—C1—H1110.00H12A—C12—H12B109.00
C5—C1—H1110.00H12A—C12—H12C109.00
N1—C1—H1110.00C8—C12—H12C110.00
C4—C3—H3107.00H12B—C12—H12C109.00
C6—C3—H3107.00N1—C13—H13B109.00
N2—C3—H3107.00N1—C13—H13C109.00
C1—C5—H5B109.00N1—C13—H13A110.00
C7—C5—H5A108.00H13A—C13—H13C109.00
C7—C5—H5B109.00H13B—C13—H13C109.00
H5A—C5—H5B107.00H13A—C13—H13B109.00
C1—C5—H5A109.00
C13—N1—C1—C256.0 (3)C2—C1—C5—C757.8 (3)
C13—N1—C1—C5177.1 (2)N2—C3—C4—O2138.2 (3)
C3—N2—C2—O11.8 (4)N2—C3—C4—O345.8 (3)
C3—N2—C2—C1176.3 (2)C6—C3—C4—O211.8 (4)
C2—N2—C3—C449.6 (3)C6—C3—C4—O3172.1 (3)
C2—N2—C3—C676.5 (3)N2—C3—C6—C866.0 (4)
N1—C1—C2—O156.6 (3)C4—C3—C6—C8168.1 (3)
N1—C1—C2—N2125.2 (3)C1—C5—C7—C9177.4 (3)
C5—C1—C2—O162.3 (3)C1—C5—C7—C1059.8 (4)
C5—C1—C2—N2115.9 (3)C3—C6—C8—C11169.8 (4)
N1—C1—C5—C7177.1 (2)C3—C6—C8—C1266.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.313.174 (2)161
N1—H1B···Cl10.902.253.092 (2)155
N2—H2···O2ii0.862.403.006 (3)128
O3—H3A···O40.851.742.591 (5)179
O4—H4A···Cl1iii0.852.513.198 (4)139
O4—H4B···Cl1iv0.852.483.182 (4)141
C1—H1···O1ii0.982.333.306 (3)175
C3—H3···O2ii0.982.533.215 (3)127
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1/2, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H27N2O3+·Cl·H2O
Mr312.83
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)5.2212 (2), 9.6032 (5), 18.4081 (8)
β (°) 96.329 (4)
V3)917.36 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.32 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.990, 1.000
No. of measured, independent and
observed [I > 2s˘I)] reflections
3703, 2616, 2271
Rint0.015
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.01
No. of reflections2616
No. of parameters186
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.22
Absolute structureFlack (1983), 686 Friedel pairs
Absolute structure parameter0.01 (8)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.313.174 (2)161
N1—H1B···Cl10.902.253.092 (2)155
N2—H2···O2ii0.862.403.006 (3)128
O3—H3A···O40.851.742.591 (5)179
O4—H4A···Cl1iii0.852.513.198 (4)139
O4—H4B···Cl1iv0.852.483.182 (4)141
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1/2, z; (iv) x+1, y+1, z.
 

Acknowledgements

This work was supported by grants from the National High Technology Development Project (863 Project, No. 2006 A A09Z408), the National Natural Science Fund (No. 20772048), the Tianhe Science and Technology Plan Project (No. 104zh134), and the Fundamental Research Funds for the Central Universities (Nos. 21611412 and 21611382)

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHumphrey, J. M. & Chamberlin, A. R. (1997). Chem. Rev. 97, 2243–2266.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLiao, X.-J., Xu, W.-J., Xu, S.-H. & Dong, F.-F. (2007). Acta Cryst. E63, o3313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodriguez, R. A., Pan, P. S., Pan, C. M., Ravula, S., Lapera, S., Singh, E. K., Styers, T. J., Brown, J. D., Cajica, J., Parry, E., Otrubova, K. & McAlpine, S. R. (2007). J. Org. Chem. 72, 1980–2002.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, W. J., Liao, X. J., Diao, J. Z., Zhou, L. & Xu, S. H. (2008). Acta Cryst. E64, o2178.  CrossRef IUCr Journals Google Scholar
First citationXu, W.-J., Liao, X.-J., Xu, S.-H., Diao, J.-Z., Du, B., Zhou, X.-L. & Pan, S.-S. (2008). Org. Lett. 10, 4569–4572.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds